MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funbrfv2b Structured version   Unicode version

Theorem funbrfv2b 5892
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
Assertion
Ref Expression
funbrfv2b  |-  ( Fun 
F  ->  ( A F B  <->  ( A  e. 
dom  F  /\  ( F `  A )  =  B ) ) )

Proof of Theorem funbrfv2b
StepHypRef Expression
1 funrel 5587 . . . 4  |-  ( Fun 
F  ->  Rel  F )
2 releldm 5224 . . . . 5  |-  ( ( Rel  F  /\  A F B )  ->  A  e.  dom  F )
32ex 432 . . . 4  |-  ( Rel 
F  ->  ( A F B  ->  A  e. 
dom  F ) )
41, 3syl 16 . . 3  |-  ( Fun 
F  ->  ( A F B  ->  A  e. 
dom  F ) )
54pm4.71rd 633 . 2  |-  ( Fun 
F  ->  ( A F B  <->  ( A  e. 
dom  F  /\  A F B ) ) )
6 funbrfvb 5890 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  =  B  <-> 
A F B ) )
76pm5.32da 639 . 2  |-  ( Fun 
F  ->  ( ( A  e.  dom  F  /\  ( F `  A )  =  B )  <->  ( A  e.  dom  F  /\  A F B ) ) )
85, 7bitr4d 256 1  |-  ( Fun 
F  ->  ( A F B  <->  ( A  e. 
dom  F  /\  ( F `  A )  =  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   class class class wbr 4439   dom cdm 4988   Rel wrel 4993   Fun wfun 5564   ` cfv 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fn 5573  df-fv 5578
This theorem is referenced by:  brtpos2  6953  mpt2curryd  6990  xpcomco  7600  fseqenlem2  8397  fpwwe2  9010  joinfval  15830  joinfval2  15831  meetfval  15844  meetfval2  15845  tayl0  22923  ofpreima  27734  funcnvmptOLD  27736  funcnvmpt  27737  fperdvper  31954
  Copyright terms: Public domain W3C validator