Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2ssres Structured version   Unicode version

Theorem fun2ssres 5629
 Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
fun2ssres

Proof of Theorem fun2ssres
StepHypRef Expression
1 resabs1 5302 . . . 4
21eqcomd 2475 . . 3
3 funssres 5628 . . . 4
43reseq1d 5272 . . 3
52, 4sylan9eqr 2530 . 2
653impa 1191 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   w3a 973   wceq 1379   wss 3476   cdm 4999   cres 5001   wfun 5582 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-res 5011  df-fun 5590 This theorem is referenced by:  tfrlem9  7055  tfrlem9a  7056  tfrlem11  7058  subgores  25079  wfrlem12  29207  wfrlem14  29209  frrlem11  29252  bnj1503  33203
 Copyright terms: Public domain W3C validator