MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2 Structured version   Unicode version

Theorem fun2 5571
Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
fun2  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> C )

Proof of Theorem fun2
StepHypRef Expression
1 fun 5570 . 2  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  C ) )
2 unidm 3494 . . 3  |-  ( C  u.  C )  =  C
3 feq3 5539 . . 3  |-  ( ( C  u.  C )  =  C  ->  (
( F  u.  G
) : ( A  u.  B ) --> ( C  u.  C )  <-> 
( F  u.  G
) : ( A  u.  B ) --> C ) )
42, 3ax-mp 5 . 2  |-  ( ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  C )  <->  ( F  u.  G ) : ( A  u.  B ) --> C )
51, 4sylib 196 1  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    u. cun 3321    i^i cin 3322   (/)c0 3632   -->wf 5409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rab 2719  df-v 2969  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-br 4288  df-opab 4346  df-id 4631  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-fun 5415  df-fn 5416  df-f 5417
This theorem is referenced by:  fresaun  5577  mapunen  7472  ac6sfi  7548  axdc3lem4  8614  fseq1p1m1  11526  axlowdimlem5  23143  axlowdimlem7  23145  uhgraun  23196  umgraun  23213  eupap1  23548  resf1o  25981
  Copyright terms: Public domain W3C validator