MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun Structured version   Unicode version

Theorem fun 5753
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fun  |-  ( ( ( F : A --> C  /\  G : B --> D )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  D ) )

Proof of Theorem fun
StepHypRef Expression
1 fnun 5692 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B )
)
21expcom 435 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  u.  G
)  Fn  ( A  u.  B ) ) )
3 rnun 5419 . . . . . 6  |-  ran  ( F  u.  G )  =  ( ran  F  u.  ran  G )
4 unss12 3681 . . . . . 6  |-  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ( ran  F  u.  ran  G ) 
C_  ( C  u.  D ) )
53, 4syl5eqss 3553 . . . . 5  |-  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ran  ( F  u.  G )  C_  ( C  u.  D
) )
65a1i 11 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ran  ( F  u.  G )  C_  ( C  u.  D
) ) )
72, 6anim12d 563 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( ran  F 
C_  C  /\  ran  G 
C_  D ) )  ->  ( ( F  u.  G )  Fn  ( A  u.  B
)  /\  ran  ( F  u.  G )  C_  ( C  u.  D
) ) ) )
8 df-f 5597 . . . . 5  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
9 df-f 5597 . . . . 5  |-  ( G : B --> D  <->  ( G  Fn  B  /\  ran  G  C_  D ) )
108, 9anbi12i 697 . . . 4  |-  ( ( F : A --> C  /\  G : B --> D )  <-> 
( ( F  Fn  A  /\  ran  F  C_  C )  /\  ( G  Fn  B  /\  ran  G  C_  D )
) )
11 an4 822 . . . 4  |-  ( ( ( F  Fn  A  /\  ran  F  C_  C
)  /\  ( G  Fn  B  /\  ran  G  C_  D ) )  <->  ( ( F  Fn  A  /\  G  Fn  B )  /\  ( ran  F  C_  C  /\  ran  G  C_  D ) ) )
1210, 11bitri 249 . . 3  |-  ( ( F : A --> C  /\  G : B --> D )  <-> 
( ( F  Fn  A  /\  G  Fn  B
)  /\  ( ran  F 
C_  C  /\  ran  G 
C_  D ) ) )
13 df-f 5597 . . 3  |-  ( ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  D )  <->  ( ( F  u.  G )  Fn  ( A  u.  B
)  /\  ran  ( F  u.  G )  C_  ( C  u.  D
) ) )
147, 12, 133imtr4g 270 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( F : A --> C  /\  G : B --> D )  ->  ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  D
) ) )
1514impcom 430 1  |-  ( ( ( F : A --> C  /\  G : B --> D )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    u. cun 3479    i^i cin 3480    C_ wss 3481   (/)c0 3790   ran crn 5005    Fn wfn 5588   -->wf 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-br 4453  df-opab 4511  df-id 4800  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-fun 5595  df-fn 5596  df-f 5597
This theorem is referenced by:  fun2  5754  ftpg  6081  fsnunf  6109  ralxpmap  7478  hashf  12390  cats1un  12676  pwssplit1  17553  axlowdimlem10  24045  constr3trllem3  24443  eulerpartlemt  28103  sseqf  28124  mapfzcons  30544  diophrw  30588  diophren  30643  pwssplit4  30931
  Copyright terms: Public domain W3C validator