MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullsubc Structured version   Unicode version

Theorem fullsubc 15066
Description: The full subcategory generated by a subset of objects is the category with these objects and the same morphisms as the original. The result is always a subcategory (and it is full, meaning that all morphisms of the original category between objects in the subcategory is also in the subcategory). (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
fullsubc.b  |-  B  =  ( Base `  C
)
fullsubc.h  |-  H  =  ( Hom f  `  C )
fullsubc.c  |-  ( ph  ->  C  e.  Cat )
fullsubc.s  |-  ( ph  ->  S  C_  B )
Assertion
Ref Expression
fullsubc  |-  ( ph  ->  ( H  |`  ( S  X.  S ) )  e.  (Subcat `  C
) )

Proof of Theorem fullsubc
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullsubc.h . . . . 5  |-  H  =  ( Hom f  `  C )
2 fullsubc.b . . . . 5  |-  B  =  ( Base `  C
)
31, 2homffn 14938 . . . 4  |-  H  Fn  ( B  X.  B
)
4 fvex 5867 . . . . 5  |-  ( Base `  C )  e.  _V
52, 4eqeltri 2544 . . . 4  |-  B  e. 
_V
6 sscres 15042 . . . 4  |-  ( ( H  Fn  ( B  X.  B )  /\  B  e.  _V )  ->  ( H  |`  ( S  X.  S ) ) 
C_cat  H )
73, 5, 6mp2an 672 . . 3  |-  ( H  |`  ( S  X.  S
) )  C_cat  H
87a1i 11 . 2  |-  ( ph  ->  ( H  |`  ( S  X.  S ) ) 
C_cat  H )
9 eqid 2460 . . . . . 6  |-  ( Hom  `  C )  =  ( Hom  `  C )
10 eqid 2460 . . . . . 6  |-  ( Id
`  C )  =  ( Id `  C
)
11 fullsubc.c . . . . . . 7  |-  ( ph  ->  C  e.  Cat )
1211adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  C  e.  Cat )
13 fullsubc.s . . . . . . 7  |-  ( ph  ->  S  C_  B )
1413sselda 3497 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  B )
152, 9, 10, 12, 14catidcl 14926 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  (
( Id `  C
) `  x )  e.  ( x ( Hom  `  C ) x ) )
16 simpr 461 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  S )
1716, 16ovresd 6418 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  (
x ( H  |`  ( S  X.  S
) ) x )  =  ( x H x ) )
181, 2, 9, 14, 14homfval 14937 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  (
x H x )  =  ( x ( Hom  `  C )
x ) )
1917, 18eqtrd 2501 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  (
x ( H  |`  ( S  X.  S
) ) x )  =  ( x ( Hom  `  C )
x ) )
2015, 19eleqtrrd 2551 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  (
( Id `  C
) `  x )  e.  ( x ( H  |`  ( S  X.  S
) ) x ) )
21 eqid 2460 . . . . . . . . . 10  |-  (comp `  C )  =  (comp `  C )
2212ad3antrrr 729 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  C  e.  Cat )
2314ad3antrrr 729 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  x  e.  B
)
2413adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  S  C_  B )
2524sselda 3497 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  S )  ->  y  e.  B )
2625adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  y  e.  B )
2726adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  y  e.  B
)
2824adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  S )  ->  S  C_  B )
2928sselda 3497 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  z  e.  B )
3029adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  z  e.  B
)
31 simprl 755 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  f  e.  ( x ( Hom  `  C
) y ) )
32 simprr 756 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  g  e.  ( y ( Hom  `  C
) z ) )
332, 9, 21, 22, 23, 27, 30, 31, 32catcocl 14929 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x ( Hom  `  C )
z ) )
3416ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  x  e.  S
)
35 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  z  e.  S
)
3634, 35ovresd 6418 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  ( x ( H  |`  ( S  X.  S ) ) z )  =  ( x H z ) )
371, 2, 9, 23, 30homfval 14937 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  ( x H z )  =  ( x ( Hom  `  C
) z ) )
3836, 37eqtrd 2501 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  ( x ( H  |`  ( S  X.  S ) ) z )  =  ( x ( Hom  `  C
) z ) )
3933, 38eleqtrrd 2551 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  /\  (
f  e.  ( x ( Hom  `  C
) y )  /\  g  e.  ( y
( Hom  `  C ) z ) ) )  ->  ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x ( H  |`  ( S  X.  S ) ) z ) )
4039ralrimivva 2878 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  A. f  e.  ( x ( Hom  `  C ) y ) A. g  e.  ( y ( Hom  `  C
) z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x ( H  |`  ( S  X.  S
) ) z ) )
41 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  S )  ->  x  e.  S )
42 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  S )  ->  y  e.  S )
4341, 42ovresd 6418 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  S )  ->  (
x ( H  |`  ( S  X.  S
) ) y )  =  ( x H y ) )
4414adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  S )  ->  x  e.  B )
451, 2, 9, 44, 25homfval 14937 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  S )  ->  (
x H y )  =  ( x ( Hom  `  C )
y ) )
4643, 45eqtrd 2501 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  S )  ->  (
x ( H  |`  ( S  X.  S
) ) y )  =  ( x ( Hom  `  C )
y ) )
4746adantr 465 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  (
x ( H  |`  ( S  X.  S
) ) y )  =  ( x ( Hom  `  C )
y ) )
48 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  y  e.  S )
49 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  z  e.  S )
5048, 49ovresd 6418 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  (
y ( H  |`  ( S  X.  S
) ) z )  =  ( y H z ) )
511, 2, 9, 26, 29homfval 14937 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  (
y H z )  =  ( y ( Hom  `  C )
z ) )
5250, 51eqtrd 2501 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  (
y ( H  |`  ( S  X.  S
) ) z )  =  ( y ( Hom  `  C )
z ) )
5352raleqdv 3057 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  ( A. g  e.  (
y ( H  |`  ( S  X.  S
) ) z ) ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  e.  ( x ( H  |`  ( S  X.  S ) ) z )  <->  A. g  e.  ( y ( Hom  `  C
) z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x ( H  |`  ( S  X.  S
) ) z ) ) )
5447, 53raleqbidv 3065 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  ( A. f  e.  (
x ( H  |`  ( S  X.  S
) ) y ) A. g  e.  ( y ( H  |`  ( S  X.  S
) ) z ) ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  e.  ( x ( H  |`  ( S  X.  S ) ) z )  <->  A. f  e.  ( x ( Hom  `  C
) y ) A. g  e.  ( y
( Hom  `  C ) z ) ( g ( <. x ,  y
>. (comp `  C )
z ) f )  e.  ( x ( H  |`  ( S  X.  S ) ) z ) ) )
5540, 54mpbird 232 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  S
)  /\  z  e.  S )  ->  A. f  e.  ( x ( H  |`  ( S  X.  S
) ) y ) A. g  e.  ( y ( H  |`  ( S  X.  S
) ) z ) ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  e.  ( x ( H  |`  ( S  X.  S ) ) z ) )
5655ralrimiva 2871 . . . . 5  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  S )  ->  A. z  e.  S  A. f  e.  ( x ( H  |`  ( S  X.  S
) ) y ) A. g  e.  ( y ( H  |`  ( S  X.  S
) ) z ) ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  e.  ( x ( H  |`  ( S  X.  S ) ) z ) )
5756ralrimiva 2871 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  A. y  e.  S  A. z  e.  S  A. f  e.  ( x ( H  |`  ( S  X.  S
) ) y ) A. g  e.  ( y ( H  |`  ( S  X.  S
) ) z ) ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  e.  ( x ( H  |`  ( S  X.  S ) ) z ) )
5820, 57jca 532 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  (
( ( Id `  C ) `  x
)  e.  ( x ( H  |`  ( S  X.  S ) ) x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x
( H  |`  ( S  X.  S ) ) y ) A. g  e.  ( y ( H  |`  ( S  X.  S
) ) z ) ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  e.  ( x ( H  |`  ( S  X.  S ) ) z ) ) )
5958ralrimiva 2871 . 2  |-  ( ph  ->  A. x  e.  S  ( ( ( Id
`  C ) `  x )  e.  ( x ( H  |`  ( S  X.  S
) ) x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x ( H  |`  ( S  X.  S
) ) y ) A. g  e.  ( y ( H  |`  ( S  X.  S
) ) z ) ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  e.  ( x ( H  |`  ( S  X.  S ) ) z ) ) )
60 xpss12 5099 . . . . 5  |-  ( ( S  C_  B  /\  S  C_  B )  -> 
( S  X.  S
)  C_  ( B  X.  B ) )
6113, 13, 60syl2anc 661 . . . 4  |-  ( ph  ->  ( S  X.  S
)  C_  ( B  X.  B ) )
62 fnssres 5685 . . . 4  |-  ( ( H  Fn  ( B  X.  B )  /\  ( S  X.  S
)  C_  ( B  X.  B ) )  -> 
( H  |`  ( S  X.  S ) )  Fn  ( S  X.  S ) )
633, 61, 62sylancr 663 . . 3  |-  ( ph  ->  ( H  |`  ( S  X.  S ) )  Fn  ( S  X.  S ) )
641, 10, 21, 11, 63issubc2 15055 . 2  |-  ( ph  ->  ( ( H  |`  ( S  X.  S
) )  e.  (Subcat `  C )  <->  ( ( H  |`  ( S  X.  S ) )  C_cat  H  /\  A. x  e.  S  ( ( ( Id
`  C ) `  x )  e.  ( x ( H  |`  ( S  X.  S
) ) x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x ( H  |`  ( S  X.  S
) ) y ) A. g  e.  ( y ( H  |`  ( S  X.  S
) ) z ) ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  e.  ( x ( H  |`  ( S  X.  S ) ) z ) ) ) ) )
658, 59, 64mpbir2and 915 1  |-  ( ph  ->  ( H  |`  ( S  X.  S ) )  e.  (Subcat `  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   _Vcvv 3106    C_ wss 3469   <.cop 4026   class class class wbr 4440    X. cxp 4990    |` cres 4994    Fn wfn 5574   ` cfv 5579  (class class class)co 6275   Basecbs 14479   Hom chom 14555  compcco 14556   Catccat 14908   Idccid 14909   Hom f chomf 14910    C_cat cssc 15026  Subcatcsubc 15028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-pm 7413  df-ixp 7460  df-cat 14912  df-cid 14913  df-homf 14914  df-ssc 15029  df-subc 15031
This theorem is referenced by:  resscat  15068  funcres2c  15117  ressffth  15154  funcsetcres2  15267
  Copyright terms: Public domain W3C validator