Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullfunfv Structured version   Unicode version

Theorem fullfunfv 28123
Description: The function value of the full function of  F agrees with  F. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fullfunfv  |-  (FullFun F `  A )  =  ( F `  A )

Proof of Theorem fullfunfv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fveq2 5800 . . . 4  |-  ( x  =  A  ->  (FullFun F `
 x )  =  (FullFun F `  A
) )
2 fveq2 5800 . . . 4  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
31, 2eqeq12d 2476 . . 3  |-  ( x  =  A  ->  (
(FullFun F `  x )  =  ( F `  x )  <->  (FullFun F `  A )  =  ( F `  A ) ) )
4 df-fullfun 28050 . . . . 5  |- FullFun F  =  (Funpart F  u.  (
( _V  \  dom Funpart F )  X.  { (/) } ) )
54fveq1i 5801 . . . 4  |-  (FullFun F `  x )  =  ( (Funpart F  u.  (
( _V  \  dom Funpart F )  X.  { (/) } ) ) `  x
)
6 disjdif 3860 . . . . . 6  |-  ( dom Funpart F  i^i  ( _V  \  dom Funpart F ) )  =  (/)
7 funpartfun 28119 . . . . . . . 8  |-  Fun Funpart F
8 funfn 5556 . . . . . . . 8  |-  ( Fun Funpart F 
<-> Funpart F  Fn  dom Funpart F )
97, 8mpbi 208 . . . . . . 7  |- Funpart F  Fn  dom Funpart F
10 0ex 4531 . . . . . . . . 9  |-  (/)  e.  _V
1110fconst 5705 . . . . . . . 8  |-  ( ( _V  \  dom Funpart F )  X.  { (/) } ) : ( _V  \  dom Funpart F ) --> { (/) }
12 ffn 5668 . . . . . . . 8  |-  ( ( ( _V  \  dom Funpart F )  X.  { (/) } ) : ( _V 
\  dom Funpart F ) --> {
(/) }  ->  ( ( _V  \  dom Funpart F )  X.  { (/) } )  Fn  ( _V  \  dom Funpart F ) )
1311, 12ax-mp 5 . . . . . . 7  |-  ( ( _V  \  dom Funpart F )  X.  { (/) } )  Fn  ( _V  \  dom Funpart F )
14 fvun1 5872 . . . . . . 7  |-  ( (Funpart
F  Fn  dom Funpart F  /\  ( ( _V  \  dom Funpart F )  X.  { (/)
} )  Fn  ( _V  \  dom Funpart F )  /\  ( ( dom Funpart F  i^i  ( _V  \  dom Funpart F ) )  =  (/)  /\  x  e.  dom Funpart F ) )  -> 
( (Funpart F  u.  ( ( _V  \  dom Funpart F )  X.  { (/)
} ) ) `  x )  =  (Funpart
F `  x )
)
159, 13, 14mp3an12 1305 . . . . . 6  |-  ( ( ( dom Funpart F  i^i  ( _V  \  dom Funpart F ) )  =  (/)  /\  x  e.  dom Funpart F )  ->  (
(Funpart F  u.  (
( _V  \  dom Funpart F )  X.  { (/) } ) ) `  x
)  =  (Funpart F `  x ) )
166, 15mpan 670 . . . . 5  |-  ( x  e.  dom Funpart F  ->  (
(Funpart F  u.  (
( _V  \  dom Funpart F )  X.  { (/) } ) ) `  x
)  =  (Funpart F `  x ) )
17 vex 3081 . . . . . . . 8  |-  x  e. 
_V
18 eldif 3447 . . . . . . . 8  |-  ( x  e.  ( _V  \  dom Funpart F )  <->  ( x  e.  _V  /\  -.  x  e.  dom Funpart F ) )
1917, 18mpbiran 909 . . . . . . 7  |-  ( x  e.  ( _V  \  dom Funpart F )  <->  -.  x  e.  dom Funpart F )
20 fvun2 5873 . . . . . . . . . 10  |-  ( (Funpart
F  Fn  dom Funpart F  /\  ( ( _V  \  dom Funpart F )  X.  { (/)
} )  Fn  ( _V  \  dom Funpart F )  /\  ( ( dom Funpart F  i^i  ( _V  \  dom Funpart F ) )  =  (/)  /\  x  e.  ( _V  \  dom Funpart F ) ) )  -> 
( (Funpart F  u.  ( ( _V  \  dom Funpart F )  X.  { (/)
} ) ) `  x )  =  ( ( ( _V  \  dom Funpart F )  X.  { (/)
} ) `  x
) )
219, 13, 20mp3an12 1305 . . . . . . . . 9  |-  ( ( ( dom Funpart F  i^i  ( _V  \  dom Funpart F ) )  =  (/)  /\  x  e.  ( _V  \  dom Funpart F ) )  ->  (
(Funpart F  u.  (
( _V  \  dom Funpart F )  X.  { (/) } ) ) `  x
)  =  ( ( ( _V  \  dom Funpart F )  X.  { (/) } ) `  x ) )
226, 21mpan 670 . . . . . . . 8  |-  ( x  e.  ( _V  \  dom Funpart F )  ->  (
(Funpart F  u.  (
( _V  \  dom Funpart F )  X.  { (/) } ) ) `  x
)  =  ( ( ( _V  \  dom Funpart F )  X.  { (/) } ) `  x ) )
2310fvconst2 6043 . . . . . . . 8  |-  ( x  e.  ( _V  \  dom Funpart F )  ->  (
( ( _V  \  dom Funpart F )  X.  { (/)
} ) `  x
)  =  (/) )
2422, 23eqtrd 2495 . . . . . . 7  |-  ( x  e.  ( _V  \  dom Funpart F )  ->  (
(Funpart F  u.  (
( _V  \  dom Funpart F )  X.  { (/) } ) ) `  x
)  =  (/) )
2519, 24sylbir 213 . . . . . 6  |-  ( -.  x  e.  dom Funpart F  -> 
( (Funpart F  u.  ( ( _V  \  dom Funpart F )  X.  { (/)
} ) ) `  x )  =  (/) )
26 ndmfv 5824 . . . . . 6  |-  ( -.  x  e.  dom Funpart F  -> 
(Funpart F `  x )  =  (/) )
2725, 26eqtr4d 2498 . . . . 5  |-  ( -.  x  e.  dom Funpart F  -> 
( (Funpart F  u.  ( ( _V  \  dom Funpart F )  X.  { (/)
} ) ) `  x )  =  (Funpart
F `  x )
)
2816, 27pm2.61i 164 . . . 4  |-  ( (Funpart
F  u.  ( ( _V  \  dom Funpart F )  X.  { (/) } ) ) `  x )  =  (Funpart F `  x )
29 funpartfv 28121 . . . 4  |-  (Funpart F `  x )  =  ( F `  x )
305, 28, 293eqtri 2487 . . 3  |-  (FullFun F `  x )  =  ( F `  x )
313, 30vtoclg 3136 . 2  |-  ( A  e.  _V  ->  (FullFun F `
 A )  =  ( F `  A
) )
32 fvprc 5794 . . 3  |-  ( -.  A  e.  _V  ->  (FullFun
F `  A )  =  (/) )
33 fvprc 5794 . . 3  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )
3432, 33eqtr4d 2498 . 2  |-  ( -.  A  e.  _V  ->  (FullFun
F `  A )  =  ( F `  A ) )
3531, 34pm2.61i 164 1  |-  (FullFun F `  A )  =  ( F `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078    \ cdif 3434    u. cun 3435    i^i cin 3436   (/)c0 3746   {csn 3986    X. cxp 4947   dom cdm 4949   Fun wfun 5521    Fn wfn 5522   -->wf 5523   ` cfv 5527  Funpartcfunpart 28024  FullFuncfullfn 28025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-eprel 4741  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-fo 5533  df-fv 5535  df-1st 6688  df-2nd 6689  df-symdif 27994  df-txp 28029  df-singleton 28037  df-singles 28038  df-image 28039  df-funpart 28049  df-fullfun 28050
This theorem is referenced by:  brfullfun  28124
  Copyright terms: Public domain W3C validator