MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullfo Structured version   Unicode version

Theorem fullfo 15337
Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b  |-  B  =  ( Base `  C
)
isfull.j  |-  J  =  ( Hom  `  D
)
isfull.h  |-  H  =  ( Hom  `  C
)
fullfo.f  |-  ( ph  ->  F ( C Full  D
) G )
fullfo.x  |-  ( ph  ->  X  e.  B )
fullfo.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
fullfo  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) ) )

Proof of Theorem fullfo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullfo.f . . 3  |-  ( ph  ->  F ( C Full  D
) G )
2 isfull.b . . . . 5  |-  B  =  ( Base `  C
)
3 isfull.j . . . . 5  |-  J  =  ( Hom  `  D
)
4 isfull.h . . . . 5  |-  H  =  ( Hom  `  C
)
52, 3, 4isfull2 15336 . . . 4  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y )
-onto-> ( ( F `  x ) J ( F `  y ) ) ) )
65simprbi 462 . . 3  |-  ( F ( C Full  D ) G  ->  A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y ) -onto-> ( ( F `
 x ) J ( F `  y
) ) )
71, 6syl 16 . 2  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y ) -onto-> ( ( F `  x
) J ( F `
 y ) ) )
8 fullfo.x . . 3  |-  ( ph  ->  X  e.  B )
9 fullfo.y . . . . 5  |-  ( ph  ->  Y  e.  B )
109adantr 463 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  B )
11 simplr 753 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  x  =  X )
12 simpr 459 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  y  =  Y )
1311, 12oveq12d 6232 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  (
x G y )  =  ( X G Y ) )
1411, 12oveq12d 6232 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  (
x H y )  =  ( X H Y ) )
1511fveq2d 5791 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( F `  x )  =  ( F `  X ) )
1612fveq2d 5791 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( F `  y )  =  ( F `  Y ) )
1715, 16oveq12d 6232 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  (
( F `  x
) J ( F `
 y ) )  =  ( ( F `
 X ) J ( F `  Y
) ) )
1813, 14, 17foeq123d 5733 . . . 4  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  (
( x G y ) : ( x H y ) -onto-> ( ( F `  x
) J ( F `
 y ) )  <-> 
( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) ) ) )
1910, 18rspcdv 3151 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( A. y  e.  B  ( x G y ) : ( x H y ) -onto-> ( ( F `  x
) J ( F `
 y ) )  ->  ( X G Y ) : ( X H Y )
-onto-> ( ( F `  X ) J ( F `  Y ) ) ) )
208, 19rspcimdv 3149 . 2  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y )
-onto-> ( ( F `  x ) J ( F `  y ) )  ->  ( X G Y ) : ( X H Y )
-onto-> ( ( F `  X ) J ( F `  Y ) ) ) )
217, 20mpd 15 1  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1836   A.wral 2742   class class class wbr 4380   -onto->wfo 5507   ` cfv 5509  (class class class)co 6214   Basecbs 14653   Hom chom 14732    Func cfunc 15279   Full cful 15327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-ral 2747  df-rex 2748  df-reu 2749  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-1st 6717  df-2nd 6718  df-map 7358  df-ixp 7407  df-func 15283  df-full 15329
This theorem is referenced by:  fulli  15338  ffthf1o  15344  fulloppc  15347  cofull  15359
  Copyright terms: Public domain W3C validator