MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucidcl Structured version   Unicode version

Theorem fucidcl 15371
Description: The identity natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucidcl.q  |-  Q  =  ( C FuncCat  D )
fucidcl.n  |-  N  =  ( C Nat  D )
fucidcl.x  |-  .1.  =  ( Id `  D )
fucidcl.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
Assertion
Ref Expression
fucidcl  |-  ( ph  ->  (  .1.  o.  ( 1st `  F ) )  e.  ( F N F ) )

Proof of Theorem fucidcl
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucidcl.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
2 funcrcl 15269 . . . . . . . 8  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
43simprd 461 . . . . . 6  |-  ( ph  ->  D  e.  Cat )
5 eqid 2382 . . . . . . 7  |-  ( Base `  D )  =  (
Base `  D )
6 fucidcl.x . . . . . . 7  |-  .1.  =  ( Id `  D )
75, 6cidfn 15086 . . . . . 6  |-  ( D  e.  Cat  ->  .1.  Fn  ( Base `  D
) )
84, 7syl 16 . . . . 5  |-  ( ph  ->  .1.  Fn  ( Base `  D ) )
9 dffn2 5640 . . . . 5  |-  (  .1. 
Fn  ( Base `  D
)  <->  .1.  : ( Base `  D ) --> _V )
108, 9sylib 196 . . . 4  |-  ( ph  ->  .1.  : ( Base `  D ) --> _V )
11 eqid 2382 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
12 relfunc 15268 . . . . . 6  |-  Rel  ( C  Func  D )
13 1st2ndbr 6748 . . . . . 6  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1412, 1, 13sylancr 661 . . . . 5  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
1511, 5, 14funcf1 15272 . . . 4  |-  ( ph  ->  ( 1st `  F
) : ( Base `  C ) --> ( Base `  D ) )
16 fcompt 5969 . . . 4  |-  ( (  .1.  : ( Base `  D ) --> _V  /\  ( 1st `  F ) : ( Base `  C
) --> ( Base `  D
) )  ->  (  .1.  o.  ( 1st `  F
) )  =  ( x  e.  ( Base `  C )  |->  (  .1.  `  ( ( 1st `  F
) `  x )
) ) )
1710, 15, 16syl2anc 659 . . 3  |-  ( ph  ->  (  .1.  o.  ( 1st `  F ) )  =  ( x  e.  ( Base `  C
)  |->  (  .1.  `  ( ( 1st `  F
) `  x )
) ) )
18 eqid 2382 . . . . . 6  |-  ( Hom  `  D )  =  ( Hom  `  D )
194adantr 463 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  D  e.  Cat )
2015ffvelrnda 5933 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  e.  (
Base `  D )
)
215, 18, 6, 19, 20catidcl 15089 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  (  .1.  `  ( ( 1st `  F
) `  x )
)  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
2221ralrimiva 2796 . . . 4  |-  ( ph  ->  A. x  e.  (
Base `  C )
(  .1.  `  (
( 1st `  F
) `  x )
)  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
23 fvex 5784 . . . . 5  |-  ( Base `  C )  e.  _V
24 mptelixpg 7425 . . . . 5  |-  ( (
Base `  C )  e.  _V  ->  ( (
x  e.  ( Base `  C )  |->  (  .1.  `  ( ( 1st `  F
) `  x )
) )  e.  X_ x  e.  ( Base `  C ) ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  <->  A. x  e.  (
Base `  C )
(  .1.  `  (
( 1st `  F
) `  x )
)  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) )
2523, 24ax-mp 5 . . . 4  |-  ( ( x  e.  ( Base `  C )  |->  (  .1.  `  ( ( 1st `  F
) `  x )
) )  e.  X_ x  e.  ( Base `  C ) ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  <->  A. x  e.  (
Base `  C )
(  .1.  `  (
( 1st `  F
) `  x )
)  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
2622, 25sylibr 212 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  C )  |->  (  .1.  `  (
( 1st `  F
) `  x )
) )  e.  X_ x  e.  ( Base `  C ) ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
2717, 26eqeltrd 2470 . 2  |-  ( ph  ->  (  .1.  o.  ( 1st `  F ) )  e.  X_ x  e.  (
Base `  C )
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  x
) ) )
284adantr 463 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  D  e.  Cat )
29 simpr1 1000 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  x  e.  ( Base `  C )
)
3029, 20syldan 468 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  F ) `  x )  e.  (
Base `  D )
)
31 eqid 2382 . . . . . 6  |-  (comp `  D )  =  (comp `  D )
3215adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  F ) : (
Base `  C ) --> ( Base `  D )
)
33 simpr2 1001 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  y  e.  ( Base `  C )
)
3432, 33ffvelrnd 5934 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  F ) `  y )  e.  (
Base `  D )
)
35 eqid 2382 . . . . . . . 8  |-  ( Hom  `  C )  =  ( Hom  `  C )
3614adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  F ) ( C 
Func  D ) ( 2nd `  F ) )
3711, 35, 18, 36, 29, 33funcf2 15274 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  C ) y ) --> ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) ) )
38 simpr3 1002 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  f  e.  ( x ( Hom  `  C ) y ) )
3937, 38ffvelrnd 5934 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
x ( 2nd `  F
) y ) `  f )  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
405, 18, 6, 28, 30, 31, 34, 39catlid 15090 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (  .1.  `  ( ( 1st `  F ) `  y
) ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( x ( 2nd `  F ) y ) `  f
) )
415, 18, 6, 28, 30, 31, 34, 39catrid 15091 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( x ( 2nd `  F ) y ) `
 f ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  x
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) (  .1.  `  ( ( 1st `  F
) `  x )
) )  =  ( ( x ( 2nd `  F ) y ) `
 f ) )
4240, 41eqtr4d 2426 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (  .1.  `  ( ( 1st `  F ) `  y
) ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  F
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  x
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) (  .1.  `  ( ( 1st `  F
) `  x )
) ) )
43 fvco3 5851 . . . . . 6  |-  ( ( ( 1st `  F
) : ( Base `  C ) --> ( Base `  D )  /\  y  e.  ( Base `  C
) )  ->  (
(  .1.  o.  ( 1st `  F ) ) `
 y )  =  (  .1.  `  (
( 1st `  F
) `  y )
) )
4432, 33, 43syl2anc 659 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (  .1.  o.  ( 1st `  F
) ) `  y
)  =  (  .1.  `  ( ( 1st `  F
) `  y )
) )
4544oveq1d 6211 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
(  .1.  o.  ( 1st `  F ) ) `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( (  .1.  `  ( ( 1st `  F
) `  y )
) ( <. (
( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) ) )
46 fvco3 5851 . . . . . 6  |-  ( ( ( 1st `  F
) : ( Base `  C ) --> ( Base `  D )  /\  x  e.  ( Base `  C
) )  ->  (
(  .1.  o.  ( 1st `  F ) ) `
 x )  =  (  .1.  `  (
( 1st `  F
) `  x )
) )
4732, 29, 46syl2anc 659 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (  .1.  o.  ( 1st `  F
) ) `  x
)  =  (  .1.  `  ( ( 1st `  F
) `  x )
) )
4847oveq2d 6212 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( x ( 2nd `  F ) y ) `
 f ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  x
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( (  .1.  o.  ( 1st `  F ) ) `  x ) )  =  ( ( ( x ( 2nd `  F
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  x
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) (  .1.  `  ( ( 1st `  F
) `  x )
) ) )
4942, 45, 483eqtr4d 2433 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
(  .1.  o.  ( 1st `  F ) ) `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  F
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  x
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( (  .1.  o.  ( 1st `  F ) ) `  x ) ) )
5049ralrimivvva 2804 . 2  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) A. f  e.  ( x
( Hom  `  C ) y ) ( ( (  .1.  o.  ( 1st `  F ) ) `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  F
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  x
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( (  .1.  o.  ( 1st `  F ) ) `  x ) ) )
51 fucidcl.n . . 3  |-  N  =  ( C Nat  D )
5251, 11, 35, 18, 31, 1, 1isnat2 15354 . 2  |-  ( ph  ->  ( (  .1.  o.  ( 1st `  F ) )  e.  ( F N F )  <->  ( (  .1.  o.  ( 1st `  F
) )  e.  X_ x  e.  ( Base `  C ) ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  /\  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) A. f  e.  ( x ( Hom  `  C ) y ) ( ( (  .1. 
o.  ( 1st `  F
) ) `  y
) ( <. (
( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  F
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  x
) >. (comp `  D
) ( ( 1st `  F ) `  y
) ) ( (  .1.  o.  ( 1st `  F ) ) `  x ) ) ) ) )
5327, 50, 52mpbir2and 920 1  |-  ( ph  ->  (  .1.  o.  ( 1st `  F ) )  e.  ( F N F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   A.wral 2732   _Vcvv 3034   <.cop 3950   class class class wbr 4367    |-> cmpt 4425    o. ccom 4917   Rel wrel 4918    Fn wfn 5491   -->wf 5492   ` cfv 5496  (class class class)co 6196   1stc1st 6697   2ndc2nd 6698   X_cixp 7388   Basecbs 14634   Hom chom 14713  compcco 14714   Catccat 15071   Idccid 15072    Func cfunc 15260   Nat cnat 15347   FuncCat cfuc 15348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-1st 6699  df-2nd 6700  df-map 7340  df-ixp 7389  df-cat 15075  df-cid 15076  df-func 15264  df-nat 15349
This theorem is referenced by:  fuclid  15372  fucrid  15373  fuccatid  15375
  Copyright terms: Public domain W3C validator