MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuccofval Unicode version

Theorem fuccofval 14111
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucval.q  |-  Q  =  ( C FuncCat  D )
fucval.b  |-  B  =  ( C  Func  D
)
fucval.n  |-  N  =  ( C Nat  D )
fucval.a  |-  A  =  ( Base `  C
)
fucval.o  |-  .x.  =  (comp `  D )
fucval.c  |-  ( ph  ->  C  e.  Cat )
fucval.d  |-  ( ph  ->  D  e.  Cat )
fuccofval.x  |-  .xb  =  (comp `  Q )
Assertion
Ref Expression
fuccofval  |-  ( ph  -> 
.xb  =  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) ) )
Distinct variable groups:    v, h, B    a, b, f, g, h, v, x, ph    C, a, b, f, g, h, v, x    D, a, b, f, g, h, v, x
Allowed substitution hints:    A( x, v, f, g, h, a, b)    B( x, f, g, a, b)    Q( x, v, f, g, h, a, b)    .xb ( x, v, f, g, h, a, b)    .x. ( x, v, f, g, h, a, b)    N( x, v, f, g, h, a, b)

Proof of Theorem fuccofval
StepHypRef Expression
1 fucval.q . . . 4  |-  Q  =  ( C FuncCat  D )
2 fucval.b . . . 4  |-  B  =  ( C  Func  D
)
3 fucval.n . . . 4  |-  N  =  ( C Nat  D )
4 fucval.a . . . 4  |-  A  =  ( Base `  C
)
5 fucval.o . . . 4  |-  .x.  =  (comp `  D )
6 fucval.c . . . 4  |-  ( ph  ->  C  e.  Cat )
7 fucval.d . . . 4  |-  ( ph  ->  D  e.  Cat )
8 eqidd 2405 . . . 4  |-  ( ph  ->  ( v  e.  ( B  X.  B ) ,  h  e.  B  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )  =  ( v  e.  ( B  X.  B
) ,  h  e.  B  |->  [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) ) )
91, 2, 3, 4, 5, 6, 7, 8fucval 14110 . . 3  |-  ( ph  ->  Q  =  { <. (
Base `  ndx ) ,  B >. ,  <. (  Hom  `  ndx ) ,  N >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. } )
109fveq2d 5691 . 2  |-  ( ph  ->  (comp `  Q )  =  (comp `  { <. ( Base `  ndx ) ,  B >. ,  <. (  Hom  `  ndx ) ,  N >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. } ) )
11 fuccofval.x . 2  |-  .xb  =  (comp `  Q )
12 ovex 6065 . . . . . 6  |-  ( C 
Func  D )  e.  _V
132, 12eqeltri 2474 . . . . 5  |-  B  e. 
_V
1413, 13xpex 4949 . . . 4  |-  ( B  X.  B )  e. 
_V
1514, 13mpt2ex 6384 . . 3  |-  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )  e.  _V
16 catstr 14109 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. (  Hom  `  ndx ) ,  N >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. } Struct  <. 1 , ; 1 5 >.
17 ccoid 13600 . . . 4  |- comp  = Slot  (comp ` 
ndx )
18 snsstp3 3911 . . . 4  |-  { <. (comp `  ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. }  C_  { <. ( Base `  ndx ) ,  B >. ,  <. (  Hom  `  ndx ) ,  N >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. }
1916, 17, 18strfv 13456 . . 3  |-  ( ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )  e.  _V  ->  (
v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )  =  (comp `  { <. ( Base `  ndx ) ,  B >. , 
<. (  Hom  `  ndx ) ,  N >. , 
<. (comp `  ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. } ) )
2015, 19ax-mp 8 . 2  |-  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )  =  (comp `  { <. ( Base `  ndx ) ,  B >. , 
<. (  Hom  `  ndx ) ,  N >. , 
<. (comp `  ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. } )
2110, 11, 203eqtr4g 2461 1  |-  ( ph  -> 
.xb  =  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   _Vcvv 2916   [_csb 3211   {ctp 3776   <.cop 3777    e. cmpt 4226    X. cxp 4835   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1stc1st 6306   2ndc2nd 6307   1c1 8947   5c5 10008  ;cdc 10338   ndxcnx 13421   Basecbs 13424    Hom chom 13495  compcco 13496   Catccat 13844    Func cfunc 14006   Nat cnat 14093   FuncCat cfuc 14094
This theorem is referenced by:  fucbas  14112  fuchom  14113  fucco  14114
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-hom 13508  df-cco 13509  df-fuc 14096
  Copyright terms: Public domain W3C validator