MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuccocl Structured version   Unicode version

Theorem fuccocl 15202
Description: The composition of two natural transformations is a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fuccocl.q  |-  Q  =  ( C FuncCat  D )
fuccocl.n  |-  N  =  ( C Nat  D )
fuccocl.x  |-  .xb  =  (comp `  Q )
fuccocl.r  |-  ( ph  ->  R  e.  ( F N G ) )
fuccocl.s  |-  ( ph  ->  S  e.  ( G N H ) )
Assertion
Ref Expression
fuccocl  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  e.  ( F N H ) )

Proof of Theorem fuccocl
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuccocl.q . . . 4  |-  Q  =  ( C FuncCat  D )
2 fuccocl.n . . . 4  |-  N  =  ( C Nat  D )
3 eqid 2441 . . . 4  |-  ( Base `  C )  =  (
Base `  C )
4 eqid 2441 . . . 4  |-  (comp `  D )  =  (comp `  D )
5 fuccocl.x . . . 4  |-  .xb  =  (comp `  Q )
6 fuccocl.r . . . 4  |-  ( ph  ->  R  e.  ( F N G ) )
7 fuccocl.s . . . 4  |-  ( ph  ->  S  e.  ( G N H ) )
81, 2, 3, 4, 5, 6, 7fucco 15200 . . 3  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  =  ( x  e.  ( Base `  C
)  |->  ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) ) ) )
9 eqid 2441 . . . . . 6  |-  ( Base `  D )  =  (
Base `  D )
10 eqid 2441 . . . . . 6  |-  ( Hom  `  D )  =  ( Hom  `  D )
112natrcl 15188 . . . . . . . . . . 11  |-  ( R  e.  ( F N G )  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D
) ) )
126, 11syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D ) ) )
1312simpld 459 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
14 funcrcl 15101 . . . . . . . . 9  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
1513, 14syl 16 . . . . . . . 8  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
1615simprd 463 . . . . . . 7  |-  ( ph  ->  D  e.  Cat )
1716adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  D  e.  Cat )
18 relfunc 15100 . . . . . . . . 9  |-  Rel  ( C  Func  D )
19 1st2ndbr 6830 . . . . . . . . 9  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
2018, 13, 19sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
213, 9, 20funcf1 15104 . . . . . . 7  |-  ( ph  ->  ( 1st `  F
) : ( Base `  C ) --> ( Base `  D ) )
2221ffvelrnda 6012 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  e.  (
Base `  D )
)
232natrcl 15188 . . . . . . . . . . 11  |-  ( S  e.  ( G N H )  ->  ( G  e.  ( C  Func  D )  /\  H  e.  ( C  Func  D
) ) )
247, 23syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( G  e.  ( C  Func  D )  /\  H  e.  ( C  Func  D ) ) )
2524simpld 459 . . . . . . . . 9  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
26 1st2ndbr 6830 . . . . . . . . 9  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
2718, 25, 26sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( 1st `  G
) ( C  Func  D ) ( 2nd `  G
) )
283, 9, 27funcf1 15104 . . . . . . 7  |-  ( ph  ->  ( 1st `  G
) : ( Base `  C ) --> ( Base `  D ) )
2928ffvelrnda 6012 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  G ) `  x )  e.  (
Base `  D )
)
3024simprd 463 . . . . . . . . 9  |-  ( ph  ->  H  e.  ( C 
Func  D ) )
31 1st2ndbr 6830 . . . . . . . . 9  |-  ( ( Rel  ( C  Func  D )  /\  H  e.  ( C  Func  D
) )  ->  ( 1st `  H ) ( C  Func  D )
( 2nd `  H
) )
3218, 30, 31sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( 1st `  H
) ( C  Func  D ) ( 2nd `  H
) )
333, 9, 32funcf1 15104 . . . . . . 7  |-  ( ph  ->  ( 1st `  H
) : ( Base `  C ) --> ( Base `  D ) )
3433ffvelrnda 6012 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  H ) `  x )  e.  (
Base `  D )
)
352, 6nat1st2nd 15189 . . . . . . . 8  |-  ( ph  ->  R  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
3635adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  R  e.  ( <. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
37 simpr 461 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  x  e.  ( Base `  C )
)
382, 36, 3, 10, 37natcl 15191 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( R `  x )  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  G
) `  x )
) )
392, 7nat1st2nd 15189 . . . . . . . 8  |-  ( ph  ->  S  e.  ( <.
( 1st `  G
) ,  ( 2nd `  G ) >. N <. ( 1st `  H ) ,  ( 2nd `  H
) >. ) )
4039adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  S  e.  ( <. ( 1st `  G
) ,  ( 2nd `  G ) >. N <. ( 1st `  H ) ,  ( 2nd `  H
) >. ) )
412, 40, 3, 10, 37natcl 15191 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( S `  x )  e.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  H
) `  x )
) )
429, 10, 4, 17, 22, 29, 34, 38, 41catcocl 14954 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( S `  x )
( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) )  e.  ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  H ) `  x
) ) )
4342ralrimiva 2855 . . . 4  |-  ( ph  ->  A. x  e.  (
Base `  C )
( ( S `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) )  e.  ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  H
) `  x )
) )
44 fvex 5862 . . . . 5  |-  ( Base `  C )  e.  _V
45 mptelixpg 7504 . . . . 5  |-  ( (
Base `  C )  e.  _V  ->  ( (
x  e.  ( Base `  C )  |->  ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) )  e.  X_ x  e.  (
Base `  C )
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  H ) `  x
) )  <->  A. x  e.  ( Base `  C
) ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) )  e.  ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  H
) `  x )
) ) )
4644, 45ax-mp 5 . . . 4  |-  ( ( x  e.  ( Base `  C )  |->  ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) )  e.  X_ x  e.  (
Base `  C )
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  H ) `  x
) )  <->  A. x  e.  ( Base `  C
) ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) )  e.  ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  H
) `  x )
) )
4743, 46sylibr 212 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  C )  |->  ( ( S `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) ) )  e.  X_ x  e.  ( Base `  C
) ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  H
) `  x )
) )
488, 47eqeltrd 2529 . 2  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  e.  X_ x  e.  (
Base `  C )
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  H ) `  x
) ) )
4916adantr 465 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  D  e.  Cat )
5021adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  F ) : (
Base `  C ) --> ( Base `  D )
)
51 simpr1 1001 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  x  e.  ( Base `  C )
)
5250, 51ffvelrnd 6013 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  F ) `  x )  e.  (
Base `  D )
)
53 simpr2 1002 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  y  e.  ( Base `  C )
)
5450, 53ffvelrnd 6013 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  F ) `  y )  e.  (
Base `  D )
)
5528adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  G ) : (
Base `  C ) --> ( Base `  D )
)
5655, 53ffvelrnd 6013 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  G ) `  y )  e.  (
Base `  D )
)
57 eqid 2441 . . . . . . . 8  |-  ( Hom  `  C )  =  ( Hom  `  C )
5820adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  F ) ( C 
Func  D ) ( 2nd `  F ) )
593, 57, 10, 58, 51, 53funcf2 15106 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  C ) y ) --> ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) ) )
60 simpr3 1003 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  f  e.  ( x ( Hom  `  C ) y ) )
6159, 60ffvelrnd 6013 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
x ( 2nd `  F
) y ) `  f )  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
6235adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  R  e.  ( <. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
632, 62, 3, 10, 53natcl 15191 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( R `  y )  e.  ( ( ( 1st `  F
) `  y )
( Hom  `  D ) ( ( 1st `  G
) `  y )
) )
6433adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  H ) : (
Base `  C ) --> ( Base `  D )
)
6564, 53ffvelrnd 6013 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  H ) `  y )  e.  (
Base `  D )
)
6639adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  S  e.  ( <. ( 1st `  G
) ,  ( 2nd `  G ) >. N <. ( 1st `  H ) ,  ( 2nd `  H
) >. ) )
672, 66, 3, 10, 53natcl 15191 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( S `  y )  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  H
) `  y )
) )
689, 10, 4, 49, 52, 54, 56, 61, 63, 65, 67catass 14955 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S `  y
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 y ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( S `  y ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( R `  y ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) ) ) )
692, 62, 3, 57, 4, 51, 53, 60nati 15193 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( R `  y )
( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  G
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( R `
 x ) ) )
7069oveq2d 6293 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( S `  y )
( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( R `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) ) )  =  ( ( S `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( ( x ( 2nd `  G ) y ) `
 f ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( R `
 x ) ) ) )
7155, 51ffvelrnd 6013 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  G ) `  x )  e.  (
Base `  D )
)
722, 62, 3, 10, 51natcl 15191 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( R `  x )  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  G
) `  x )
) )
7327adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  G ) ( C 
Func  D ) ( 2nd `  G ) )
743, 57, 10, 73, 51, 53funcf2 15106 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( x
( 2nd `  G
) y ) : ( x ( Hom  `  C ) y ) --> ( ( ( 1st `  G ) `  x
) ( Hom  `  D
) ( ( 1st `  G ) `  y
) ) )
7574, 60ffvelrnd 6013 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
x ( 2nd `  G
) y ) `  f )  e.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  G
) `  y )
) )
769, 10, 4, 49, 52, 71, 56, 72, 75, 65, 67catass 14955 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S `  y
) ( <. (
( 1st `  G
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( x ( 2nd `  G
) y ) `  f ) ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 x ) )  =  ( ( S `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( ( x ( 2nd `  G ) y ) `
 f ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( R `
 x ) ) ) )
772, 66, 3, 57, 4, 51, 53, 60nati 15193 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( S `  y )
( <. ( ( 1st `  G ) `  x
) ,  ( ( 1st `  G ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( x ( 2nd `  G
) y ) `  f ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( S `
 x ) ) )
7877oveq1d 6292 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S `  y
) ( <. (
( 1st `  G
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( x ( 2nd `  G
) y ) `  f ) ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 x ) )  =  ( ( ( ( x ( 2nd `  H ) y ) `
 f ) (
<. ( ( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( S `
 x ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( R `  x ) ) )
7970, 76, 783eqtr2d 2488 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( S `  y )
( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( R `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) ) )  =  ( ( ( ( x ( 2nd `  H ) y ) `
 f ) (
<. ( ( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( S `
 x ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( R `  x ) ) )
8064, 51ffvelrnd 6013 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  H ) `  x )  e.  (
Base `  D )
)
812, 66, 3, 10, 51natcl 15191 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( S `  x )  e.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  H
) `  x )
) )
8232adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  H ) ( C 
Func  D ) ( 2nd `  H ) )
833, 57, 10, 82, 51, 53funcf2 15106 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( x
( 2nd `  H
) y ) : ( x ( Hom  `  C ) y ) --> ( ( ( 1st `  H ) `  x
) ( Hom  `  D
) ( ( 1st `  H ) `  y
) ) )
8483, 60ffvelrnd 6013 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
x ( 2nd `  H
) y ) `  f )  e.  ( ( ( 1st `  H
) `  x )
( Hom  `  D ) ( ( 1st `  H
) `  y )
) )
859, 10, 4, 49, 52, 71, 80, 72, 81, 65, 84catass 14955 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( ( x ( 2nd `  H ) y ) `  f
) ( <. (
( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( S `
 x ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( R `  x ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) ) )
8668, 79, 853eqtrd 2486 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S `  y
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 y ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) ) )
876adantr 465 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  R  e.  ( F N G ) )
887adantr 465 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  S  e.  ( G N H ) )
891, 2, 3, 4, 5, 87, 88, 53fuccoval 15201 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( S ( <. F ,  G >.  .xb  H ) R ) `  y )  =  ( ( S `
 y ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 y ) ) )
9089oveq1d 6292 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S ( <. F ,  G >.  .xb 
H ) R ) `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( S `
 y ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 y ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) ) )
911, 2, 3, 4, 5, 87, 88, 51fuccoval 15201 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x )  =  ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) ) )
9291oveq2d 6293 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( x ( 2nd `  H ) y ) `
 f ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) )  =  ( ( ( x ( 2nd `  H ) y ) `
 f ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) ) )
9386, 90, 923eqtr4d 2492 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S ( <. F ,  G >.  .xb 
H ) R ) `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) ) )
9493ralrimivvva 2863 . 2  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) A. f  e.  ( x
( Hom  `  C ) y ) ( ( ( S ( <. F ,  G >.  .xb 
H ) R ) `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) ) )
952, 3, 57, 10, 4, 13, 30isnat2 15186 . 2  |-  ( ph  ->  ( ( S (
<. F ,  G >.  .xb 
H ) R )  e.  ( F N H )  <->  ( ( S ( <. F ,  G >.  .xb  H ) R )  e.  X_ x  e.  ( Base `  C
) ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  H
) `  x )
)  /\  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) A. f  e.  ( x ( Hom  `  C ) y ) ( ( ( S ( <. F ,  G >. 
.xb  H ) R ) `  y ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) ) ) ) )
9648, 94, 95mpbir2and 920 1  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  e.  ( F N H ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   A.wral 2791   _Vcvv 3093   <.cop 4016   class class class wbr 4433    |-> cmpt 4491   Rel wrel 4990   -->wf 5570   ` cfv 5574  (class class class)co 6277   1stc1st 6779   2ndc2nd 6780   X_cixp 7467   Basecbs 14504   Hom chom 14580  compcco 14581   Catccat 14933    Func cfunc 15092   Nat cnat 15179   FuncCat cfuc 15180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-er 7309  df-map 7420  df-ixp 7468  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10980  df-uz 11086  df-fz 11677  df-struct 14506  df-ndx 14507  df-slot 14508  df-base 14509  df-hom 14593  df-cco 14594  df-cat 14937  df-func 15096  df-nat 15181  df-fuc 15182
This theorem is referenced by:  fucass  15206  fuccatid  15207  evlfcllem  15359  yonedalem3b  15417
  Copyright terms: Public domain W3C validator