MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthres2 Structured version   Unicode version

Theorem fthres2 15176
Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 27-Jan-2017.)
Assertion
Ref Expression
fthres2  |-  ( R  e.  (Subcat `  D
)  ->  ( C Faith  ( D  |`cat  R ) )  C_  ( C Faith  D ) )

Proof of Theorem fthres2
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfth 15153 . . 3  |-  Rel  ( C Faith  ( D  |`cat  R )
)
21a1i 11 . 2  |-  ( R  e.  (Subcat `  D
)  ->  Rel  ( C Faith 
( D  |`cat  R )
) )
3 funcres2 15142 . . . . . 6  |-  ( R  e.  (Subcat `  D
)  ->  ( C  Func  ( D  |`cat  R )
)  C_  ( C  Func  D ) )
43ssbrd 4494 . . . . 5  |-  ( R  e.  (Subcat `  D
)  ->  ( f
( C  Func  ( D  |`cat  R ) ) g  ->  f ( C 
Func  D ) g ) )
54anim1d 564 . . . 4  |-  ( R  e.  (Subcat `  D
)  ->  ( (
f ( C  Func  ( D  |`cat  R ) ) g  /\  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) Fun  `' (
x g y ) )  ->  ( f
( C  Func  D
) g  /\  A. x  e.  ( Base `  C ) A. y  e.  ( Base `  C
) Fun  `' (
x g y ) ) ) )
6 eqid 2467 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
76isfth 15158 . . . 4  |-  ( f ( C Faith  ( D  |`cat 
R ) ) g  <-> 
( f ( C 
Func  ( D  |`cat  R
) ) g  /\  A. x  e.  ( Base `  C ) A. y  e.  ( Base `  C
) Fun  `' (
x g y ) ) )
86isfth 15158 . . . 4  |-  ( f ( C Faith  D ) g  <->  ( f ( C  Func  D )
g  /\  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) Fun  `' (
x g y ) ) )
95, 7, 83imtr4g 270 . . 3  |-  ( R  e.  (Subcat `  D
)  ->  ( f
( C Faith  ( D  |`cat  R ) ) g  -> 
f ( C Faith  D
) g ) )
10 df-br 4454 . . 3  |-  ( f ( C Faith  ( D  |`cat 
R ) ) g  <->  <. f ,  g >.  e.  ( C Faith  ( D  |`cat 
R ) ) )
11 df-br 4454 . . 3  |-  ( f ( C Faith  D ) g  <->  <. f ,  g
>.  e.  ( C Faith  D
) )
129, 10, 113imtr3g 269 . 2  |-  ( R  e.  (Subcat `  D
)  ->  ( <. f ,  g >.  e.  ( C Faith  ( D  |`cat  R
) )  ->  <. f ,  g >.  e.  ( C Faith  D ) ) )
132, 12relssdv 5101 1  |-  ( R  e.  (Subcat `  D
)  ->  ( C Faith  ( D  |`cat  R ) )  C_  ( C Faith  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767   A.wral 2817    C_ wss 3481   <.cop 4039   class class class wbr 4453   `'ccnv 5004   Rel wrel 5010   Fun wfun 5588   ` cfv 5594  (class class class)co 6295   Basecbs 14507    |`cat cresc 15055  Subcatcsubc 15056    Func cfunc 15098   Faith cfth 15147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-hom 14596  df-cco 14597  df-cat 14940  df-cid 14941  df-homf 14942  df-ssc 15057  df-resc 15058  df-subc 15059  df-func 15102  df-fth 15149
This theorem is referenced by:  rescfth  15181
  Copyright terms: Public domain W3C validator