MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthpropd Structured version   Unicode version

Theorem fthpropd 15137
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
fullpropd.2  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
fullpropd.3  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
fullpropd.4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
fullpropd.a  |-  ( ph  ->  A  e.  V )
fullpropd.b  |-  ( ph  ->  B  e.  V )
fullpropd.c  |-  ( ph  ->  C  e.  V )
fullpropd.d  |-  ( ph  ->  D  e.  V )
Assertion
Ref Expression
fthpropd  |-  ( ph  ->  ( A Faith  C )  =  ( B Faith  D
) )

Proof of Theorem fthpropd
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfth 15125 . 2  |-  Rel  ( A Faith  C )
2 relfth 15125 . 2  |-  Rel  ( B Faith  D )
3 fullpropd.1 . . . . . 6  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
4 fullpropd.2 . . . . . 6  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
5 fullpropd.3 . . . . . 6  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
6 fullpropd.4 . . . . . 6  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
7 fullpropd.a . . . . . 6  |-  ( ph  ->  A  e.  V )
8 fullpropd.b . . . . . 6  |-  ( ph  ->  B  e.  V )
9 fullpropd.c . . . . . 6  |-  ( ph  ->  C  e.  V )
10 fullpropd.d . . . . . 6  |-  ( ph  ->  D  e.  V )
113, 4, 5, 6, 7, 8, 9, 10funcpropd 15116 . . . . 5  |-  ( ph  ->  ( A  Func  C
)  =  ( B 
Func  D ) )
1211breqd 4451 . . . 4  |-  ( ph  ->  ( f ( A 
Func  C ) g  <->  f ( B  Func  D ) g ) )
133homfeqbas 14941 . . . . 5  |-  ( ph  ->  ( Base `  A
)  =  ( Base `  B ) )
1413raleqdv 3057 . . . . 5  |-  ( ph  ->  ( A. y  e.  ( Base `  A
) Fun  `' (
x g y )  <->  A. y  e.  ( Base `  B ) Fun  `' ( x g y ) ) )
1513, 14raleqbidv 3065 . . . 4  |-  ( ph  ->  ( A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) Fun  `' (
x g y )  <->  A. x  e.  ( Base `  B ) A. y  e.  ( Base `  B ) Fun  `' ( x g y ) ) )
1612, 15anbi12d 710 . . 3  |-  ( ph  ->  ( ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) Fun  `' (
x g y ) )  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) Fun  `' (
x g y ) ) ) )
17 eqid 2460 . . . 4  |-  ( Base `  A )  =  (
Base `  A )
1817isfth 15130 . . 3  |-  ( f ( A Faith  C ) g  <->  ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) Fun  `' (
x g y ) ) )
19 eqid 2460 . . . 4  |-  ( Base `  B )  =  (
Base `  B )
2019isfth 15130 . . 3  |-  ( f ( B Faith  D ) g  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) Fun  `' (
x g y ) ) )
2116, 18, 203bitr4g 288 . 2  |-  ( ph  ->  ( f ( A Faith 
C ) g  <->  f ( B Faith  D ) g ) )
221, 2, 21eqbrrdiv 5092 1  |-  ( ph  ->  ( A Faith  C )  =  ( B Faith  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   class class class wbr 4440   `'ccnv 4991   Fun wfun 5573   ` cfv 5579  (class class class)co 6275   Basecbs 14479   Hom f chomf 14910  compfccomf 14911    Func cfunc 15070   Faith cfth 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-map 7412  df-ixp 7460  df-cat 14912  df-cid 14913  df-homf 14914  df-comf 14915  df-func 15074  df-fth 15121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator