Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2nc Structured version   Unicode version

Theorem ftc2nc 28479
Description: Choice-free proof of ftc2 21519. (Contributed by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
ftc2nc.a  |-  ( ph  ->  A  e.  RR )
ftc2nc.b  |-  ( ph  ->  B  e.  RR )
ftc2nc.le  |-  ( ph  ->  A  <_  B )
ftc2nc.c  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( A (,) B )
-cn-> CC ) )
ftc2nc.i  |-  ( ph  ->  ( RR  _D  F
)  e.  L^1 )
ftc2nc.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
Assertion
Ref Expression
ftc2nc  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Distinct variable groups:    t, A    t, B    t, F    ph, t

Proof of Theorem ftc2nc
Dummy variables  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2nc.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
21rexrd 9436 . . . . . 6  |-  ( ph  ->  A  e.  RR* )
3 ftc2nc.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
43rexrd 9436 . . . . . 6  |-  ( ph  ->  B  e.  RR* )
5 ftc2nc.le . . . . . 6  |-  ( ph  ->  A  <_  B )
6 ubicc2 11405 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
72, 4, 5, 6syl3anc 1218 . . . . 5  |-  ( ph  ->  B  e.  ( A [,] B ) )
8 fvex 5704 . . . . . 6  |-  ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) `  A )  e.  _V
98fvconst2 5936 . . . . 5  |-  ( B  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  A
) } ) `  B )  =  ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) )
107, 9syl 16 . . . 4  |-  ( ph  ->  ( ( ( A [,] B )  X. 
{ ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) } ) `  B )  =  ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) )
11 eqid 2443 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1211subcn 20445 . . . . . . . . 9  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
1312a1i 11 . . . . . . . 8  |-  ( ph  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
14 eqid 2443 . . . . . . . . 9  |-  ( x  e.  ( A [,] B )  |->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t )  =  ( x  e.  ( A [,] B
)  |->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t )
15 ssid 3378 . . . . . . . . . 10  |-  ( A (,) B )  C_  ( A (,) B )
1615a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
17 ioossre 11360 . . . . . . . . . 10  |-  ( A (,) B )  C_  RR
1817a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  RR )
19 ftc2nc.i . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
)  e.  L^1 )
20 ftc2nc.c . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( A (,) B )
-cn-> CC ) )
21 cncff 20472 . . . . . . . . . 10  |-  ( ( RR  _D  F )  e.  ( ( A (,) B ) -cn-> CC )  ->  ( RR  _D  F ) : ( A (,) B ) --> CC )
2220, 21syl 16 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
23 ioof 11390 . . . . . . . . . . . . 13  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
24 ffun 5564 . . . . . . . . . . . . 13  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
2523, 24ax-mp 5 . . . . . . . . . . . 12  |-  Fun  (,)
26 fvelima 5746 . . . . . . . . . . . 12  |-  ( ( Fun  (,)  /\  s  e.  ( (,) " (
( A [,] B
)  X.  ( A [,] B ) ) ) )  ->  E. x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) ( (,) `  x
)  =  s )
2725, 26mpan 670 . . . . . . . . . . 11  |-  ( s  e.  ( (,) " (
( A [,] B
)  X.  ( A [,] B ) ) )  ->  E. x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) ( (,) `  x
)  =  s )
28 1st2nd2 6616 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
2928fveq2d 5698 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  ( (,) `  x )  =  ( (,) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. ) )
30 df-ov 6097 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  x ) (,) ( 2nd `  x
) )  =  ( (,) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
3129, 30syl6eqr 2493 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  ( (,) `  x )  =  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )
3231eqeq1d 2451 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  (
( (,) `  x
)  =  s  <->  ( ( 1st `  x ) (,) ( 2nd `  x
) )  =  s ) )
3332adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( (,) `  x )  =  s  <->  ( ( 1st `  x ) (,) ( 2nd `  x ) )  =  s ) )
342, 4jca 532 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
3534adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( A  e.  RR*  /\  B  e. 
RR* ) )
36 xp1st 6609 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  ( 1st `  x )  e.  ( A [,] B
) )
37 elicc1 11347 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( 1st `  x
)  e.  ( A [,] B )  <->  ( ( 1st `  x )  e. 
RR*  /\  A  <_  ( 1st `  x )  /\  ( 1st `  x
)  <_  B )
) )
382, 4, 37syl2anc 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1st `  x
)  e.  ( A [,] B )  <->  ( ( 1st `  x )  e. 
RR*  /\  A  <_  ( 1st `  x )  /\  ( 1st `  x
)  <_  B )
) )
3938biimpa 484 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 1st `  x )  e.  ( A [,] B ) )  ->  ( ( 1st `  x )  e. 
RR*  /\  A  <_  ( 1st `  x )  /\  ( 1st `  x
)  <_  B )
)
4039simp2d 1001 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 1st `  x )  e.  ( A [,] B ) )  ->  A  <_  ( 1st `  x ) )
4136, 40sylan2 474 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  A  <_  ( 1st `  x ) )
42 xp2nd 6610 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  ( 2nd `  x )  e.  ( A [,] B
) )
43 iccleub 11354 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( 2nd `  x )  e.  ( A [,] B ) )  ->  ( 2nd `  x )  <_  B
)
44433expa 1187 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( 2nd `  x
)  e.  ( A [,] B ) )  ->  ( 2nd `  x
)  <_  B )
4534, 42, 44syl2an 477 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( 2nd `  x )  <_  B
)
46 df-ioo 11307 . . . . . . . . . . . . . . . . . . . 20  |-  (,)  =  ( s  e.  RR* ,  t  e.  RR*  |->  { y  e.  RR*  |  (
s  <  y  /\  y  <  t ) } )
47 xrlelttr 11133 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR*  /\  ( 1st `  x )  e. 
RR*  /\  z  e.  RR* )  ->  ( ( A  <_  ( 1st `  x
)  /\  ( 1st `  x )  <  z
)  ->  A  <  z ) )
48 xrltletr 11134 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  RR*  /\  ( 2nd `  x )  e. 
RR*  /\  B  e.  RR* )  ->  ( (
z  <  ( 2nd `  x )  /\  ( 2nd `  x )  <_  B )  ->  z  <  B ) )
4946, 46, 47, 48ixxss12 11323 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  ( 1st `  x )  /\  ( 2nd `  x )  <_  B ) )  ->  ( ( 1st `  x ) (,) ( 2nd `  x ) ) 
C_  ( A (,) B ) )
5035, 41, 45, 49syl12anc 1216 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( 1st `  x ) (,) ( 2nd `  x
) )  C_  ( A (,) B ) )
5150sselda 3359 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  ->  t  e.  ( A (,) B ) )
5222ffvelrnda 5846 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  t )  e.  CC )
5352adantlr 714 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  t )  e.  CC )
5451, 53syldan 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  ->  ( ( RR 
_D  F ) `  t )  e.  CC )
55 ioombl 21049 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  x ) (,) ( 2nd `  x
) )  e.  dom  vol
5655a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( 1st `  x ) (,) ( 2nd `  x
) )  e.  dom  vol )
57 fvex 5704 . . . . . . . . . . . . . . . . . 18  |-  ( ( RR  _D  F ) `
 t )  e. 
_V
5857a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
5922feqmptd 5747 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( RR  _D  F
)  =  ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) ) )
6059, 19eqeltrrd 2518 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( t  e.  ( A (,) B ) 
|->  ( ( RR  _D  F ) `  t
) )  e.  L^1 )
6160adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( A (,) B
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L^1 )
6250, 56, 58, 61iblss 21285 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( RR  _D  F
) `  t )
)  e.  L^1 )
63 ax-resscn 9342 . . . . . . . . . . . . . . . . . . . . 21  |-  RR  C_  CC
64 ssid 3378 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  C_  CC
65 cncfss 20478 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
6663, 64, 65mp2an 672 . . . . . . . . . . . . . . . . . . . 20  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
67 abscncf 20480 . . . . . . . . . . . . . . . . . . . 20  |-  abs  e.  ( CC -cn-> RR )
6866, 67sselii 3356 . . . . . . . . . . . . . . . . . . 19  |-  abs  e.  ( CC -cn-> CC )
6968a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  abs  e.  ( CC -cn-> CC ) )
7059reseq1d 5112 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( 1st `  x
) (,) ( 2nd `  x ) ) )  =  ( ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) ) )
7170adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( RR  _D  F )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  =  ( ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) ) )
72 resmpt 5159 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  C_  ( A (,) B )  ->  ( ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  =  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( RR  _D  F
) `  t )
) )
7350, 72syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( (
t  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  t )
)  |`  ( ( 1st `  x ) (,) ( 2nd `  x ) ) )  =  ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) 
|->  ( ( RR  _D  F ) `  t
) ) )
7471, 73eqtrd 2475 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( RR  _D  F )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  =  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( RR  _D  F
) `  t )
) )
7520adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( RR  _D  F )  e.  ( ( A (,) B
) -cn-> CC ) )
76 rescncf 20476 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  C_  ( A (,) B )  ->  ( ( RR 
_D  F )  e.  ( ( A (,) B ) -cn-> CC )  ->  ( ( RR 
_D  F )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  e.  ( ( ( 1st `  x ) (,) ( 2nd `  x
) ) -cn-> CC ) ) )
7750, 75, 76sylc 60 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( RR  _D  F )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  e.  ( ( ( 1st `  x ) (,) ( 2nd `  x
) ) -cn-> CC ) )
7874, 77eqeltrrd 2518 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( RR  _D  F
) `  t )
)  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )
7969, 78cncfmpt1f 20492 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( abs `  ( ( RR  _D  F ) `
 t ) ) )  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )
80 cnmbf 21140 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  e. 
dom  vol  /\  ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) 
|->  ( abs `  (
( RR  _D  F
) `  t )
) )  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )  ->  (
t  e.  ( ( 1st `  x ) (,) ( 2nd `  x
) )  |->  ( abs `  ( ( RR  _D  F ) `  t
) ) )  e. MblFn
)
8155, 79, 80sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( abs `  ( ( RR  _D  F ) `
 t ) ) )  e. MblFn )
8211mulcn 20446 . . . . . . . . . . . . . . . . . . 19  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
8382a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
8454, 62itgcl 21264 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  S. (
( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
8584cjcld 12688 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( * `  S. ( ( 1st `  x ) (,) ( 2nd `  x ) ) ( ( RR  _D  F ) `  t
)  _d t )  e.  CC )
86 ioossre 11360 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  x ) (,) ( 2nd `  x
) )  C_  RR
8786, 63sstri 3368 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  x ) (,) ( 2nd `  x
) )  C_  CC
88 cncfmptc 20490 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  e.  CC  /\  ( ( 1st `  x
) (,) ( 2nd `  x ) )  C_  CC  /\  CC  C_  CC )  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t ) )  e.  ( ( ( 1st `  x ) (,) ( 2nd `  x ) )
-cn-> CC ) )
8987, 64, 88mp3an23 1306 . . . . . . . . . . . . . . . . . . 19  |-  ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  e.  CC  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t ) )  e.  ( ( ( 1st `  x ) (,) ( 2nd `  x ) )
-cn-> CC ) )
9085, 89syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t ) )  e.  ( ( ( 1st `  x ) (,) ( 2nd `  x ) )
-cn-> CC ) )
91 nfcv 2582 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ s
( ( RR  _D  F ) `  t
)
92 nfcsb1v 3307 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ t [_ s  /  t ]_ ( ( RR  _D  F ) `  t
)
93 csbeq1a 3300 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  s  ->  (
( RR  _D  F
) `  t )  =  [_ s  /  t ]_ ( ( RR  _D  F ) `  t
) )
9491, 92, 93cbvmpt 4385 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) 
|->  ( ( RR  _D  F ) `  t
) )  =  ( s  e.  ( ( 1st `  x ) (,) ( 2nd `  x
) )  |->  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
)
9594, 78syl5eqelr 2528 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
)  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )
9611, 83, 90, 95cncfmpt2f 20493 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  x.  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
) )  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )
97 cnmbf 21140 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  e. 
dom  vol  /\  ( s  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) 
|->  ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  x.  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
) )  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )  ->  (
s  e.  ( ( 1st `  x ) (,) ( 2nd `  x
) )  |->  ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  x.  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
) )  e. MblFn )
9855, 96, 97sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  x.  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
) )  e. MblFn )
9954, 62, 81, 98itgabsnc 28464 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( abs `  S. ( ( 1st `  x ) (,) ( 2nd `  x ) ) ( ( RR  _D  F ) `  t
)  _d t )  <_  S. ( ( 1st `  x ) (,) ( 2nd `  x
) ) ( abs `  ( ( RR  _D  F ) `  t
) )  _d t )
10054abscld 12925 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  ->  ( abs `  (
( RR  _D  F
) `  t )
)  e.  RR )
10157a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  ->  ( ( RR 
_D  F ) `  t )  e.  _V )
102101, 62, 81iblabsnc 28459 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( abs `  ( ( RR  _D  F ) `
 t ) ) )  e.  L^1 )
10354absge0d 12933 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  ->  0  <_  ( abs `  ( ( RR 
_D  F ) `  t ) ) )
104100, 102, 103itgposval 21276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  S. (
( 1st `  x
) (,) ( 2nd `  x ) ) ( abs `  ( ( RR  _D  F ) `
 t ) )  _d t  =  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x
) ) ,  ( abs `  ( ( RR  _D  F ) `
 t ) ) ,  0 ) ) ) )
10599, 104breqtrd 4319 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( abs `  S. ( ( 1st `  x ) (,) ( 2nd `  x ) ) ( ( RR  _D  F ) `  t
)  _d t )  <_  ( S.2 `  (
t  e.  RR  |->  if ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) ) )
106 itgeq1 21253 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  S. (
( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t  =  S. s ( ( RR 
_D  F ) `  t )  _d t )
107106fveq2d 5698 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( abs `  S. ( ( 1st `  x ) (,) ( 2nd `  x ) ) ( ( RR  _D  F ) `  t
)  _d t )  =  ( abs `  S. s ( ( RR 
_D  F ) `  t )  _d t ) )
108 eleq2 2504 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  <->  t  e.  s ) )
109108ifbid 3814 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  if (
t  e.  ( ( 1st `  x ) (,) ( 2nd `  x
) ) ,  ( abs `  ( ( RR  _D  F ) `
 t ) ) ,  0 )  =  if ( t  e.  s ,  ( abs `  ( ( RR  _D  F ) `  t
) ) ,  0 ) )
110109mpteq2dv 4382 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( t  e.  RR  |->  if ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) )  =  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) )
111110fveq2d 5698 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) )  =  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) ) )
112107, 111breq12d 4308 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( ( abs `  S. ( ( 1st `  x ) (,) ( 2nd `  x
) ) ( ( RR  _D  F ) `
 t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) )  <->  ( abs `  S. s ( ( RR  _D  F ) `
 t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  ( ( RR  _D  F ) `
 t ) ) ,  0 ) ) ) ) )
113105, 112syl5ibcom 220 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( (
( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( abs `  S. s ( ( RR  _D  F ) `
 t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  ( ( RR  _D  F ) `
 t ) ) ,  0 ) ) ) ) )
11433, 113sylbid 215 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( (,) `  x )  =  s  ->  ( abs `  S. s ( ( RR  _D  F ) `
 t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  ( ( RR  _D  F ) `
 t ) ) ,  0 ) ) ) ) )
115114rexlimdva 2844 . . . . . . . . . . 11  |-  ( ph  ->  ( E. x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) ( (,) `  x
)  =  s  -> 
( abs `  S. s ( ( RR 
_D  F ) `  t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) ) ) )
11627, 115syl5 32 . . . . . . . . . 10  |-  ( ph  ->  ( s  e.  ( (,) " ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( abs `  S. s ( ( RR 
_D  F ) `  t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) ) ) )
117116ralrimiv 2801 . . . . . . . . 9  |-  ( ph  ->  A. s  e.  ( (,) " ( ( A [,] B )  X.  ( A [,] B ) ) ) ( abs `  S. s ( ( RR 
_D  F ) `  t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) ) )
11814, 1, 3, 5, 16, 18, 19, 22, 117ftc1anc 28478 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t )  e.  ( ( A [,] B
) -cn-> CC ) )
119 ftc2nc.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
120 cncff 20472 . . . . . . . . . . 11  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  F :
( A [,] B
) --> CC )
121119, 120syl 16 . . . . . . . . . 10  |-  ( ph  ->  F : ( A [,] B ) --> CC )
122121feqmptd 5747 . . . . . . . . 9  |-  ( ph  ->  F  =  ( x  e.  ( A [,] B )  |->  ( F `
 x ) ) )
123122, 119eqeltrrd 2518 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( F `  x
) )  e.  ( ( A [,] B
) -cn-> CC ) )
12411, 13, 118, 123cncfmpt2f 20493 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) )  e.  ( ( A [,] B
) -cn-> CC ) )
12563a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
126 iccssre 11380 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
1271, 3, 126syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( A [,] B
)  C_  RR )
12857a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) x
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
1293adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
130129rexrd 9436 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR* )
131 elicc2 11363 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
1321, 3, 131syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
133132biimpa 484 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
134133simp3d 1002 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
135 iooss2 11339 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR*  /\  x  <_  B )  ->  ( A (,) x )  C_  ( A (,) B ) )
136130, 134, 135syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  C_  ( A (,) B ) )
137 ioombl 21049 . . . . . . . . . . . . . 14  |-  ( A (,) x )  e. 
dom  vol
138137a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  e.  dom  vol )
13957a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
14060adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) B
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L^1 )
141136, 138, 139, 140iblss 21285 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) x
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L^1 )
142128, 141itgcl 21264 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
143121ffvelrnda 5846 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
144142, 143subcld 9722 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) )  e.  CC )
14511tgioo2 20383 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
146 iccntr 20401 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
1471, 3, 146syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
148125, 127, 144, 145, 11, 147dvmptntr 21448 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) ) )
149 reelprrecn 9377 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
150149a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  { RR ,  CC } )
151 ioossicc 11384 . . . . . . . . . . . 12  |-  ( A (,) B )  C_  ( A [,] B )
152151sseli 3355 . . . . . . . . . . 11  |-  ( x  e.  ( A (,) B )  ->  x  e.  ( A [,] B
) )
153152, 142sylan2 474 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
15422ffvelrnda 5846 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
15514, 1, 3, 5, 20, 19ftc1cnnc 28469 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( RR  _D  F ) )
156125, 127, 142, 145, 11, 147dvmptntr 21448 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t ) ) )
15722feqmptd 5747 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
)  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 x ) ) )
158155, 156, 1573eqtr3d 2483 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
159152, 143sylan2 474 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( F `  x )  e.  CC )
160122oveq2d 6110 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( x  e.  ( A [,] B
)  |->  ( F `  x ) ) ) )
161125, 127, 143, 145, 11, 147dvmptntr 21448 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( F `  x ) ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  ( F `
 x ) ) ) )
162160, 157, 1613eqtr3rd 2484 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  ( F `  x ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
163150, 153, 154, 158, 159, 154, 162dvmptsub 21444 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  x
)  -  ( ( RR  _D  F ) `
 x ) ) ) )
164154subidd 9710 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  x )  -  ( ( RR 
_D  F ) `  x ) )  =  0 )
165164mpteq2dva 4381 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  x )  -  (
( RR  _D  F
) `  x )
) )  =  ( x  e.  ( A (,) B )  |->  0 ) )
166148, 163, 1653eqtrd 2479 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( x  e.  ( A (,) B )  |->  0 ) )
167 fconstmpt 4885 . . . . . . . 8  |-  ( ( A (,) B )  X.  { 0 } )  =  ( x  e.  ( A (,) B )  |->  0 )
168166, 167syl6eqr 2493 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( ( A (,) B
)  X.  { 0 } ) )
1691, 3, 124, 168dveq0 21475 . . . . . 6  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) )  =  ( ( A [,] B
)  X.  { ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) } ) )
170169fveq1d 5696 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  B
)  =  ( ( ( A [,] B
)  X.  { ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) } ) `  B ) )
171 oveq2 6102 . . . . . . . . 9  |-  ( x  =  B  ->  ( A (,) x )  =  ( A (,) B
) )
172 itgeq1 21253 . . . . . . . . 9  |-  ( ( A (,) x )  =  ( A (,) B )  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t )
173171, 172syl 16 . . . . . . . 8  |-  ( x  =  B  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t )
174 fveq2 5694 . . . . . . . 8  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
175173, 174oveq12d 6112 . . . . . . 7  |-  ( x  =  B  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  =  ( S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  B )
) )
176 eqid 2443 . . . . . . 7  |-  ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) )  =  ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) )
177 ovex 6119 . . . . . . 7  |-  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) )  e. 
_V
178175, 176, 177fvmpt 5777 . . . . . 6  |-  ( B  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  B
)  =  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) ) )
1797, 178syl 16 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  B
)  =  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) ) )
180170, 179eqtr3d 2477 . . . 4  |-  ( ph  ->  ( ( ( A [,] B )  X. 
{ ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) } ) `  B )  =  ( S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  B ) ) )
181 lbicc2 11404 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
1822, 4, 5, 181syl3anc 1218 . . . . 5  |-  ( ph  ->  A  e.  ( A [,] B ) )
183 oveq2 6102 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( A (,) x )  =  ( A (,) A
) )
184 iooid 11331 . . . . . . . . . . 11  |-  ( A (,) A )  =  (/)
185183, 184syl6eq 2491 . . . . . . . . . 10  |-  ( x  =  A  ->  ( A (,) x )  =  (/) )
186 itgeq1 21253 . . . . . . . . . 10  |-  ( ( A (,) x )  =  (/)  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. (/) ( ( RR 
_D  F ) `  t )  _d t )
187185, 186syl 16 . . . . . . . . 9  |-  ( x  =  A  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. (/) ( ( RR 
_D  F ) `  t )  _d t )
188 itg0 21260 . . . . . . . . 9  |-  S. (/) ( ( RR  _D  F ) `  t
)  _d t  =  0
189187, 188syl6eq 2491 . . . . . . . 8  |-  ( x  =  A  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  0 )
190 fveq2 5694 . . . . . . . 8  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
191189, 190oveq12d 6112 . . . . . . 7  |-  ( x  =  A  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  =  ( 0  -  ( F `  A )
) )
192 df-neg 9601 . . . . . . 7  |-  -u ( F `  A )  =  ( 0  -  ( F `  A
) )
193191, 192syl6eqr 2493 . . . . . 6  |-  ( x  =  A  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  = 
-u ( F `  A ) )
194 negex 9611 . . . . . 6  |-  -u ( F `  A )  e.  _V
195193, 176, 194fvmpt 5777 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
)  =  -u ( F `  A )
)
196182, 195syl 16 . . . 4  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  A
)  =  -u ( F `  A )
)
19710, 180, 1963eqtr3d 2483 . . 3  |-  ( ph  ->  ( S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  B )
)  =  -u ( F `  A )
)
198197oveq2d 6110 . 2  |-  ( ph  ->  ( ( F `  B )  +  ( S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 B ) ) )  =  ( ( F `  B )  +  -u ( F `  A ) ) )
199121, 7ffvelrnd 5847 . . 3  |-  ( ph  ->  ( F `  B
)  e.  CC )
20057a1i 11 . . . 4  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  t )  e.  _V )
201200, 60itgcl 21264 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  e.  CC )
202199, 201pncan3d 9725 . 2  |-  ( ph  ->  ( ( F `  B )  +  ( S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 B ) ) )  =  S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t )
203121, 182ffvelrnd 5847 . . 3  |-  ( ph  ->  ( F `  A
)  e.  CC )
204199, 203negsubd 9728 . 2  |-  ( ph  ->  ( ( F `  B )  +  -u ( F `  A ) )  =  ( ( F `  B )  -  ( F `  A ) ) )
205198, 202, 2043eqtr3d 2483 1  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2719   _Vcvv 2975   [_csb 3291    C_ wss 3331   (/)c0 3640   ifcif 3794   ~Pcpw 3863   {csn 3880   {cpr 3882   <.cop 3886   class class class wbr 4295    e. cmpt 4353    X. cxp 4841   dom cdm 4843   ran crn 4844    |` cres 4845   "cima 4846   Fun wfun 5415   -->wf 5417   ` cfv 5421  (class class class)co 6094   1stc1st 6578   2ndc2nd 6579   CCcc 9283   RRcr 9284   0cc0 9285    + caddc 9288    x. cmul 9290   RR*cxr 9420    < clt 9421    <_ cle 9422    - cmin 9598   -ucneg 9599   (,)cioo 11303   [,]cicc 11306   *ccj 12588   abscabs 12726   TopOpenctopn 14363   topGenctg 14379  ℂfldccnfld 17821   intcnt 18624    Cn ccn 18831    tX ctx 19136   -cn->ccncf 20455   volcvol 20950  MblFncmbf 21097   S.2citg2 21099   L^1cibl 21100   S.citg 21101    _D cdv 21341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364  ax-mulf 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-disj 4266  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-ofr 6324  df-om 6480  df-1st 6580  df-2nd 6581  df-supp 6694  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-omul 6928  df-er 7104  df-map 7219  df-pm 7220  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fsupp 7624  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-acn 8115  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-mod 11712  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-rlim 12970  df-sum 13167  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-starv 14256  df-sca 14257  df-vsca 14258  df-ip 14259  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-hom 14265  df-cco 14266  df-rest 14364  df-topn 14365  df-0g 14383  df-gsum 14384  df-topgen 14385  df-pt 14386  df-prds 14389  df-xrs 14443  df-qtop 14448  df-imas 14449  df-xps 14451  df-mre 14527  df-mrc 14528  df-acs 14530  df-mnd 15418  df-submnd 15468  df-mulg 15551  df-cntz 15838  df-cmn 16282  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-fbas 17817  df-fg 17818  df-cnfld 17822  df-top 18506  df-bases 18508  df-topon 18509  df-topsp 18510  df-cld 18626  df-ntr 18627  df-cls 18628  df-nei 18705  df-lp 18743  df-perf 18744  df-cn 18834  df-cnp 18835  df-haus 18922  df-cmp 18993  df-tx 19138  df-hmeo 19331  df-fil 19422  df-fm 19514  df-flim 19515  df-flf 19516  df-xms 19898  df-ms 19899  df-tms 19900  df-cncf 20457  df-ovol 20951  df-vol 20952  df-mbf 21102  df-itg1 21103  df-itg2 21104  df-ibl 21105  df-itg 21106  df-0p 21151  df-limc 21344  df-dv 21345
This theorem is referenced by:  areacirc  28492
  Copyright terms: Public domain W3C validator