MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc2ditglem Structured version   Unicode version

Theorem ftc2ditglem 21361
Description: Lemma for ftc2ditg 21362. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
ftc2ditg.x  |-  ( ph  ->  X  e.  RR )
ftc2ditg.y  |-  ( ph  ->  Y  e.  RR )
ftc2ditg.a  |-  ( ph  ->  A  e.  ( X [,] Y ) )
ftc2ditg.b  |-  ( ph  ->  B  e.  ( X [,] Y ) )
ftc2ditg.c  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( X (,) Y )
-cn-> CC ) )
ftc2ditg.i  |-  ( ph  ->  ( RR  _D  F
)  e.  L^1 )
ftc2ditg.f  |-  ( ph  ->  F  e.  ( ( X [,] Y )
-cn-> CC ) )
Assertion
Ref Expression
ftc2ditglem  |-  ( (
ph  /\  A  <_  B )  ->  S__ [ A  ->  B ] ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Distinct variable groups:    t, A    t, B    t, F    ph, t    t, X    t, Y

Proof of Theorem ftc2ditglem
StepHypRef Expression
1 simpr 458 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  A  <_  B )
21ditgpos 21175 . 2  |-  ( (
ph  /\  A  <_  B )  ->  S__ [ A  ->  B ] ( ( RR  _D  F ) `
 t )  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t )
3 ftc2ditg.x . . . . . . 7  |-  ( ph  ->  X  e.  RR )
4 ftc2ditg.y . . . . . . 7  |-  ( ph  ->  Y  e.  RR )
5 iccssre 11367 . . . . . . 7  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  C_  RR )
63, 4, 5syl2anc 656 . . . . . 6  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
7 ftc2ditg.a . . . . . 6  |-  ( ph  ->  A  e.  ( X [,] Y ) )
86, 7sseldd 3347 . . . . 5  |-  ( ph  ->  A  e.  RR )
98adantr 462 . . . 4  |-  ( (
ph  /\  A  <_  B )  ->  A  e.  RR )
10 ftc2ditg.b . . . . . 6  |-  ( ph  ->  B  e.  ( X [,] Y ) )
116, 10sseldd 3347 . . . . 5  |-  ( ph  ->  B  e.  RR )
1211adantr 462 . . . 4  |-  ( (
ph  /\  A  <_  B )  ->  B  e.  RR )
13 ax-resscn 9329 . . . . . . . 8  |-  RR  C_  CC
1413a1i 11 . . . . . . 7  |-  ( (
ph  /\  A  <_  B )  ->  RR  C_  CC )
15 ftc2ditg.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( ( X [,] Y )
-cn-> CC ) )
16 cncff 20313 . . . . . . . . 9  |-  ( F  e.  ( ( X [,] Y ) -cn-> CC )  ->  F :
( X [,] Y
) --> CC )
1715, 16syl 16 . . . . . . . 8  |-  ( ph  ->  F : ( X [,] Y ) --> CC )
1817adantr 462 . . . . . . 7  |-  ( (
ph  /\  A  <_  B )  ->  F :
( X [,] Y
) --> CC )
196adantr 462 . . . . . . 7  |-  ( (
ph  /\  A  <_  B )  ->  ( X [,] Y )  C_  RR )
20 iccssre 11367 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
218, 11, 20syl2anc 656 . . . . . . . 8  |-  ( ph  ->  ( A [,] B
)  C_  RR )
2221adantr 462 . . . . . . 7  |-  ( (
ph  /\  A  <_  B )  ->  ( A [,] B )  C_  RR )
23 eqid 2435 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2423tgioo2 20224 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
2523, 24dvres 21230 . . . . . . 7  |-  ( ( ( RR  C_  CC  /\  F : ( X [,] Y ) --> CC )  /\  ( ( X [,] Y ) 
C_  RR  /\  ( A [,] B )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) ) ) )
2614, 18, 19, 22, 25syl22anc 1214 . . . . . 6  |-  ( (
ph  /\  A  <_  B )  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  =  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
27 iccntr 20242 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
288, 11, 27syl2anc 656 . . . . . . . 8  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
2928adantr 462 . . . . . . 7  |-  ( (
ph  /\  A  <_  B )  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) )  =  ( A (,) B ) )
3029reseq2d 5099 . . . . . 6  |-  ( (
ph  /\  A  <_  B )  ->  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  =  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )
3126, 30eqtrd 2467 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  =  ( ( RR  _D  F )  |`  ( A (,) B
) ) )
323rexrd 9423 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR* )
33 elicc2 11350 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
343, 4, 33syl2anc 656 . . . . . . . . . . 11  |-  ( ph  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
357, 34mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  ( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) )
3635simp2d 996 . . . . . . . . 9  |-  ( ph  ->  X  <_  A )
37 iooss1 11325 . . . . . . . . 9  |-  ( ( X  e.  RR*  /\  X  <_  A )  ->  ( A (,) B )  C_  ( X (,) B ) )
3832, 36, 37syl2anc 656 . . . . . . . 8  |-  ( ph  ->  ( A (,) B
)  C_  ( X (,) B ) )
394rexrd 9423 . . . . . . . . 9  |-  ( ph  ->  Y  e.  RR* )
40 elicc2 11350 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
413, 4, 40syl2anc 656 . . . . . . . . . . 11  |-  ( ph  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
4210, 41mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  ( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) )
4342simp3d 997 . . . . . . . . 9  |-  ( ph  ->  B  <_  Y )
44 iooss2 11326 . . . . . . . . 9  |-  ( ( Y  e.  RR*  /\  B  <_  Y )  ->  ( X (,) B )  C_  ( X (,) Y ) )
4539, 43, 44syl2anc 656 . . . . . . . 8  |-  ( ph  ->  ( X (,) B
)  C_  ( X (,) Y ) )
4638, 45sstrd 3356 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  ( X (,) Y ) )
4746adantr 462 . . . . . 6  |-  ( (
ph  /\  A  <_  B )  ->  ( A (,) B )  C_  ( X (,) Y ) )
48 ftc2ditg.c . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( X (,) Y )
-cn-> CC ) )
4948adantr 462 . . . . . 6  |-  ( (
ph  /\  A  <_  B )  ->  ( RR  _D  F )  e.  ( ( X (,) Y
) -cn-> CC ) )
50 rescncf 20317 . . . . . 6  |-  ( ( A (,) B ) 
C_  ( X (,) Y )  ->  (
( RR  _D  F
)  e.  ( ( X (,) Y )
-cn-> CC )  ->  (
( RR  _D  F
)  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> CC ) ) )
5147, 49, 50sylc 60 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  ( ( RR  _D  F )  |`  ( A (,) B ) )  e.  ( ( A (,) B )
-cn-> CC ) )
5231, 51eqeltrd 2509 . . . 4  |-  ( (
ph  /\  A  <_  B )  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  e.  ( ( A (,) B )
-cn-> CC ) )
53 cncff 20313 . . . . . . . . . . 11  |-  ( ( RR  _D  F )  e.  ( ( X (,) Y ) -cn-> CC )  ->  ( RR  _D  F ) : ( X (,) Y ) --> CC )
5448, 53syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  F
) : ( X (,) Y ) --> CC )
5554feqmptd 5734 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
)  =  ( t  e.  ( X (,) Y )  |->  ( ( RR  _D  F ) `
 t ) ) )
5655adantr 462 . . . . . . . 8  |-  ( (
ph  /\  A  <_  B )  ->  ( RR  _D  F )  =  ( t  e.  ( X (,) Y )  |->  ( ( RR  _D  F
) `  t )
) )
5756reseq1d 5098 . . . . . . 7  |-  ( (
ph  /\  A  <_  B )  ->  ( ( RR  _D  F )  |`  ( A (,) B ) )  =  ( ( t  e.  ( X (,) Y )  |->  ( ( RR  _D  F
) `  t )
)  |`  ( A (,) B ) ) )
58 resmpt 5146 . . . . . . . 8  |-  ( ( A (,) B ) 
C_  ( X (,) Y )  ->  (
( t  e.  ( X (,) Y ) 
|->  ( ( RR  _D  F ) `  t
) )  |`  ( A (,) B ) )  =  ( t  e.  ( A (,) B
)  |->  ( ( RR 
_D  F ) `  t ) ) )
5947, 58syl 16 . . . . . . 7  |-  ( (
ph  /\  A  <_  B )  ->  ( (
t  e.  ( X (,) Y )  |->  ( ( RR  _D  F
) `  t )
)  |`  ( A (,) B ) )  =  ( t  e.  ( A (,) B ) 
|->  ( ( RR  _D  F ) `  t
) ) )
6057, 59eqtrd 2467 . . . . . 6  |-  ( (
ph  /\  A  <_  B )  ->  ( ( RR  _D  F )  |`  ( A (,) B ) )  =  ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) ) )
6131, 60eqtrd 2467 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  =  ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) ) )
62 ioombl 20890 . . . . . . 7  |-  ( A (,) B )  e. 
dom  vol
6362a1i 11 . . . . . 6  |-  ( (
ph  /\  A  <_  B )  ->  ( A (,) B )  e.  dom  vol )
64 fvex 5691 . . . . . . 7  |-  ( ( RR  _D  F ) `
 t )  e. 
_V
6564a1i 11 . . . . . 6  |-  ( ( ( ph  /\  A  <_  B )  /\  t  e.  ( X (,) Y
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
66 ftc2ditg.i . . . . . . . 8  |-  ( ph  ->  ( RR  _D  F
)  e.  L^1 )
6766adantr 462 . . . . . . 7  |-  ( (
ph  /\  A  <_  B )  ->  ( RR  _D  F )  e.  L^1 )
6856, 67eqeltrrd 2510 . . . . . 6  |-  ( (
ph  /\  A  <_  B )  ->  ( t  e.  ( X (,) Y
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L^1 )
6947, 63, 65, 68iblss 21126 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  ( t  e.  ( A (,) B
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L^1 )
7061, 69eqeltrd 2509 . . . 4  |-  ( (
ph  /\  A  <_  B )  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  e.  L^1 )
71 iccss2 11356 . . . . . . 7  |-  ( ( A  e.  ( X [,] Y )  /\  B  e.  ( X [,] Y ) )  -> 
( A [,] B
)  C_  ( X [,] Y ) )
727, 10, 71syl2anc 656 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  ( X [,] Y ) )
73 rescncf 20317 . . . . . 6  |-  ( ( A [,] B ) 
C_  ( X [,] Y )  ->  ( F  e.  ( ( X [,] Y ) -cn-> CC )  ->  ( F  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> CC ) ) )
7472, 15, 73sylc 60 . . . . 5  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
7574adantr 462 . . . 4  |-  ( (
ph  /\  A  <_  B )  ->  ( F  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> CC ) )
769, 12, 1, 52, 70, 75ftc2 21360 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  S. ( A (,) B ) ( ( RR  _D  ( F  |`  ( A [,] B ) ) ) `
 t )  _d t  =  ( ( ( F  |`  ( A [,] B ) ) `
 B )  -  ( ( F  |`  ( A [,] B ) ) `  A ) ) )
7731fveq1d 5683 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  ( ( RR  _D  ( F  |`  ( A [,] B ) ) ) `  t
)  =  ( ( ( RR  _D  F
)  |`  ( A (,) B ) ) `  t ) )
78 fvres 5694 . . . . 5  |-  ( t  e.  ( A (,) B )  ->  (
( ( RR  _D  F )  |`  ( A (,) B ) ) `
 t )  =  ( ( RR  _D  F ) `  t
) )
7977, 78sylan9eq 2487 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  t  e.  ( A (,) B
) )  ->  (
( RR  _D  ( F  |`  ( A [,] B ) ) ) `
 t )  =  ( ( RR  _D  F ) `  t
) )
8079itgeq2dv 21103 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  S. ( A (,) B ) ( ( RR  _D  ( F  |`  ( A [,] B ) ) ) `
 t )  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t )
819rexrd 9423 . . . 4  |-  ( (
ph  /\  A  <_  B )  ->  A  e.  RR* )
8212rexrd 9423 . . . 4  |-  ( (
ph  /\  A  <_  B )  ->  B  e.  RR* )
83 ubicc2 11391 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
84 lbicc2 11390 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
85 fvres 5694 . . . . . 6  |-  ( B  e.  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) ) `
 B )  =  ( F `  B
) )
86 fvres 5694 . . . . . 6  |-  ( A  e.  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) ) `
 A )  =  ( F `  A
) )
8785, 86oveqan12d 6101 . . . . 5  |-  ( ( B  e.  ( A [,] B )  /\  A  e.  ( A [,] B ) )  -> 
( ( ( F  |`  ( A [,] B
) ) `  B
)  -  ( ( F  |`  ( A [,] B ) ) `  A ) )  =  ( ( F `  B )  -  ( F `  A )
) )
8883, 84, 87syl2anc 656 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( ( F  |`  ( A [,] B ) ) `  B )  -  ( ( F  |`  ( A [,] B
) ) `  A
) )  =  ( ( F `  B
)  -  ( F `
 A ) ) )
8981, 82, 1, 88syl3anc 1213 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  ( (
( F  |`  ( A [,] B ) ) `
 B )  -  ( ( F  |`  ( A [,] B ) ) `  A ) )  =  ( ( F `  B )  -  ( F `  A ) ) )
9076, 80, 893eqtr3d 2475 . 2  |-  ( (
ph  /\  A  <_  B )  ->  S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  =  (
( F `  B
)  -  ( F `
 A ) ) )
912, 90eqtrd 2467 1  |-  ( (
ph  /\  A  <_  B )  ->  S__ [ A  ->  B ] ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1757   _Vcvv 2964    C_ wss 3318   class class class wbr 4282    e. cmpt 4340   dom cdm 4829   ran crn 4830    |` cres 4831   -->wf 5404   ` cfv 5408  (class class class)co 6082   CCcc 9270   RRcr 9271   RR*cxr 9407    <_ cle 9409    - cmin 9585   (,)cioo 11290   [,]cicc 11293   TopOpenctopn 14345   topGenctg 14361  ℂfldccnfld 17664   intcnt 18465   -cn->ccncf 20296   volcvol 20791   L^1cibl 20941   S.citg 20942   S__cdit 21165    _D cdv 21182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-inf2 7837  ax-cc 8594  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350  ax-addf 9351  ax-mulf 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-iin 4164  df-disj 4253  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-se 4669  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-isom 5417  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6311  df-ofr 6312  df-om 6468  df-1st 6568  df-2nd 6569  df-supp 6682  df-recs 6820  df-rdg 6854  df-1o 6910  df-2o 6911  df-oadd 6914  df-omul 6915  df-er 7091  df-map 7206  df-pm 7207  df-ixp 7254  df-en 7301  df-dom 7302  df-sdom 7303  df-fin 7304  df-fsupp 7611  df-fi 7651  df-sup 7681  df-oi 7714  df-card 8099  df-acn 8102  df-cda 8327  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-3 10371  df-4 10372  df-5 10373  df-6 10374  df-7 10375  df-8 10376  df-9 10377  df-10 10378  df-n0 10570  df-z 10637  df-dec 10746  df-uz 10852  df-q 10944  df-rp 10982  df-xneg 11079  df-xadd 11080  df-xmul 11081  df-ioo 11294  df-ioc 11295  df-ico 11296  df-icc 11297  df-fz 11427  df-fzo 11535  df-fl 11628  df-mod 11695  df-seq 11793  df-exp 11852  df-hash 12090  df-cj 12574  df-re 12575  df-im 12576  df-sqr 12710  df-abs 12711  df-clim 12952  df-rlim 12953  df-sum 13150  df-struct 14161  df-ndx 14162  df-slot 14163  df-base 14164  df-sets 14165  df-ress 14166  df-plusg 14236  df-mulr 14237  df-starv 14238  df-sca 14239  df-vsca 14240  df-ip 14241  df-tset 14242  df-ple 14243  df-ds 14245  df-unif 14246  df-hom 14247  df-cco 14248  df-rest 14346  df-topn 14347  df-0g 14365  df-gsum 14366  df-topgen 14367  df-pt 14368  df-prds 14371  df-xrs 14425  df-qtop 14430  df-imas 14431  df-xps 14433  df-mre 14509  df-mrc 14510  df-acs 14512  df-mnd 15400  df-submnd 15450  df-mulg 15530  df-cntz 15817  df-cmn 16261  df-psmet 17655  df-xmet 17656  df-met 17657  df-bl 17658  df-mopn 17659  df-fbas 17660  df-fg 17661  df-cnfld 17665  df-top 18347  df-bases 18349  df-topon 18350  df-topsp 18351  df-cld 18467  df-ntr 18468  df-cls 18469  df-nei 18546  df-lp 18584  df-perf 18585  df-cn 18675  df-cnp 18676  df-haus 18763  df-cmp 18834  df-tx 18979  df-hmeo 19172  df-fil 19263  df-fm 19355  df-flim 19356  df-flf 19357  df-xms 19739  df-ms 19740  df-tms 19741  df-cncf 20298  df-ovol 20792  df-vol 20793  df-mbf 20943  df-itg1 20944  df-itg2 20945  df-ibl 20946  df-itg 20947  df-0p 20992  df-ditg 21166  df-limc 21185  df-dv 21186
This theorem is referenced by:  ftc2ditg  21362
  Copyright terms: Public domain W3C validator