MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc2 Structured version   Unicode version

Theorem ftc2 21496
Description: The Fundamental Theorem of Calculus, part two. If  F is a function continuous on  [ A ,  B ] and continuously differentiable on  ( A ,  B ), then the integral of the derivative of  F is equal to  F ( B )  -  F ( A ). This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
ftc2.a  |-  ( ph  ->  A  e.  RR )
ftc2.b  |-  ( ph  ->  B  e.  RR )
ftc2.le  |-  ( ph  ->  A  <_  B )
ftc2.c  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( A (,) B )
-cn-> CC ) )
ftc2.i  |-  ( ph  ->  ( RR  _D  F
)  e.  L^1 )
ftc2.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
Assertion
Ref Expression
ftc2  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Distinct variable groups:    t, A    t, B    t, F    ph, t

Proof of Theorem ftc2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ftc2.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
21rexrd 9425 . . . . . 6  |-  ( ph  ->  A  e.  RR* )
3 ftc2.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
43rexrd 9425 . . . . . 6  |-  ( ph  ->  B  e.  RR* )
5 ftc2.le . . . . . 6  |-  ( ph  ->  A  <_  B )
6 ubicc2 11394 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
72, 4, 5, 6syl3anc 1218 . . . . 5  |-  ( ph  ->  B  e.  ( A [,] B ) )
8 fvex 5696 . . . . . 6  |-  ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) `  A )  e.  _V
98fvconst2 5928 . . . . 5  |-  ( B  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  A
) } ) `  B )  =  ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) )
107, 9syl 16 . . . 4  |-  ( ph  ->  ( ( ( A [,] B )  X. 
{ ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) } ) `  B )  =  ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) )
11 eqid 2438 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1211subcn 20422 . . . . . . . . 9  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
1312a1i 11 . . . . . . . 8  |-  ( ph  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
14 eqid 2438 . . . . . . . . 9  |-  ( x  e.  ( A [,] B )  |->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t )  =  ( x  e.  ( A [,] B
)  |->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t )
15 ssid 3370 . . . . . . . . . 10  |-  ( A (,) B )  C_  ( A (,) B )
1615a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
17 ioossre 11349 . . . . . . . . . 10  |-  ( A (,) B )  C_  RR
1817a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  RR )
19 ftc2.i . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
)  e.  L^1 )
20 ftc2.c . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( A (,) B )
-cn-> CC ) )
21 cncff 20449 . . . . . . . . . 10  |-  ( ( RR  _D  F )  e.  ( ( A (,) B ) -cn-> CC )  ->  ( RR  _D  F ) : ( A (,) B ) --> CC )
2220, 21syl 16 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
2314, 1, 3, 5, 16, 18, 19, 22ftc1a 21489 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t )  e.  ( ( A [,] B
) -cn-> CC ) )
24 ftc2.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
25 cncff 20449 . . . . . . . . . . 11  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  F :
( A [,] B
) --> CC )
2624, 25syl 16 . . . . . . . . . 10  |-  ( ph  ->  F : ( A [,] B ) --> CC )
2726feqmptd 5739 . . . . . . . . 9  |-  ( ph  ->  F  =  ( x  e.  ( A [,] B )  |->  ( F `
 x ) ) )
2827, 24eqeltrrd 2513 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( F `  x
) )  e.  ( ( A [,] B
) -cn-> CC ) )
2911, 13, 23, 28cncfmpt2f 20470 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) )  e.  ( ( A [,] B
) -cn-> CC ) )
30 ax-resscn 9331 . . . . . . . . . . 11  |-  RR  C_  CC
3130a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
32 iccssre 11369 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
331, 3, 32syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( A [,] B
)  C_  RR )
34 fvex 5696 . . . . . . . . . . . . 13  |-  ( ( RR  _D  F ) `
 t )  e. 
_V
3534a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) x
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
363adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
3736rexrd 9425 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR* )
38 elicc2 11352 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
391, 3, 38syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
4039biimpa 484 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
4140simp3d 1002 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
42 iooss2 11328 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR*  /\  x  <_  B )  ->  ( A (,) x )  C_  ( A (,) B ) )
4337, 41, 42syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  C_  ( A (,) B ) )
44 ioombl 21026 . . . . . . . . . . . . . 14  |-  ( A (,) x )  e. 
dom  vol
4544a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  e.  dom  vol )
4634a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
4722feqmptd 5739 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) ) )
4847, 19eqeltrrd 2513 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( t  e.  ( A (,) B ) 
|->  ( ( RR  _D  F ) `  t
) )  e.  L^1 )
4948adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) B
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L^1 )
5043, 45, 46, 49iblss 21262 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) x
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L^1 )
5135, 50itgcl 21241 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
5226ffvelrnda 5838 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
5351, 52subcld 9711 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) )  e.  CC )
5411tgioo2 20360 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
55 iccntr 20378 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
561, 3, 55syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5731, 33, 53, 54, 11, 56dvmptntr 21425 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) ) )
58 reelprrecn 9366 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
5958a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  { RR ,  CC } )
60 ioossicc 11373 . . . . . . . . . . . 12  |-  ( A (,) B )  C_  ( A [,] B )
6160sseli 3347 . . . . . . . . . . 11  |-  ( x  e.  ( A (,) B )  ->  x  e.  ( A [,] B
) )
6261, 51sylan2 474 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
6322ffvelrnda 5838 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
6414, 1, 3, 5, 20, 19ftc1cn 21495 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( RR  _D  F ) )
6531, 33, 51, 54, 11, 56dvmptntr 21425 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t ) ) )
6622feqmptd 5739 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
)  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 x ) ) )
6764, 65, 663eqtr3d 2478 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
6861, 52sylan2 474 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( F `  x )  e.  CC )
6931, 33, 52, 54, 11, 56dvmptntr 21425 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( F `  x ) ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  ( F `
 x ) ) ) )
7027oveq2d 6102 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( x  e.  ( A [,] B
)  |->  ( F `  x ) ) ) )
7170, 66eqtr3d 2472 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( F `  x ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
7269, 71eqtr3d 2472 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  ( F `  x ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
7359, 62, 63, 67, 68, 63, 72dvmptsub 21421 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  x
)  -  ( ( RR  _D  F ) `
 x ) ) ) )
7463subidd 9699 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  x )  -  ( ( RR 
_D  F ) `  x ) )  =  0 )
7574mpteq2dva 4373 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  x )  -  (
( RR  _D  F
) `  x )
) )  =  ( x  e.  ( A (,) B )  |->  0 ) )
7657, 73, 753eqtrd 2474 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( x  e.  ( A (,) B )  |->  0 ) )
77 fconstmpt 4877 . . . . . . . 8  |-  ( ( A (,) B )  X.  { 0 } )  =  ( x  e.  ( A (,) B )  |->  0 )
7876, 77syl6eqr 2488 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( ( A (,) B
)  X.  { 0 } ) )
791, 3, 29, 78dveq0 21452 . . . . . 6  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) )  =  ( ( A [,] B
)  X.  { ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) } ) )
8079fveq1d 5688 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  B
)  =  ( ( ( A [,] B
)  X.  { ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) } ) `  B ) )
81 oveq2 6094 . . . . . . . . 9  |-  ( x  =  B  ->  ( A (,) x )  =  ( A (,) B
) )
82 itgeq1 21230 . . . . . . . . 9  |-  ( ( A (,) x )  =  ( A (,) B )  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t )
8381, 82syl 16 . . . . . . . 8  |-  ( x  =  B  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t )
84 fveq2 5686 . . . . . . . 8  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
8583, 84oveq12d 6104 . . . . . . 7  |-  ( x  =  B  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  =  ( S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  B )
) )
86 eqid 2438 . . . . . . 7  |-  ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) )  =  ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) )
87 ovex 6111 . . . . . . 7  |-  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) )  e. 
_V
8885, 86, 87fvmpt 5769 . . . . . 6  |-  ( B  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  B
)  =  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) ) )
897, 88syl 16 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  B
)  =  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) ) )
9080, 89eqtr3d 2472 . . . 4  |-  ( ph  ->  ( ( ( A [,] B )  X. 
{ ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) } ) `  B )  =  ( S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  B ) ) )
91 lbicc2 11393 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
922, 4, 5, 91syl3anc 1218 . . . . 5  |-  ( ph  ->  A  e.  ( A [,] B ) )
93 oveq2 6094 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( A (,) x )  =  ( A (,) A
) )
94 iooid 11320 . . . . . . . . . . 11  |-  ( A (,) A )  =  (/)
9593, 94syl6eq 2486 . . . . . . . . . 10  |-  ( x  =  A  ->  ( A (,) x )  =  (/) )
96 itgeq1 21230 . . . . . . . . . 10  |-  ( ( A (,) x )  =  (/)  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. (/) ( ( RR 
_D  F ) `  t )  _d t )
9795, 96syl 16 . . . . . . . . 9  |-  ( x  =  A  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. (/) ( ( RR 
_D  F ) `  t )  _d t )
98 itg0 21237 . . . . . . . . 9  |-  S. (/) ( ( RR  _D  F ) `  t
)  _d t  =  0
9997, 98syl6eq 2486 . . . . . . . 8  |-  ( x  =  A  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  0 )
100 fveq2 5686 . . . . . . . 8  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
10199, 100oveq12d 6104 . . . . . . 7  |-  ( x  =  A  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  =  ( 0  -  ( F `  A )
) )
102 df-neg 9590 . . . . . . 7  |-  -u ( F `  A )  =  ( 0  -  ( F `  A
) )
103101, 102syl6eqr 2488 . . . . . 6  |-  ( x  =  A  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  = 
-u ( F `  A ) )
104 negex 9600 . . . . . 6  |-  -u ( F `  A )  e.  _V
105103, 86, 104fvmpt 5769 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
)  =  -u ( F `  A )
)
10692, 105syl 16 . . . 4  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  A
)  =  -u ( F `  A )
)
10710, 90, 1063eqtr3d 2478 . . 3  |-  ( ph  ->  ( S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  B )
)  =  -u ( F `  A )
)
108107oveq2d 6102 . 2  |-  ( ph  ->  ( ( F `  B )  +  ( S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 B ) ) )  =  ( ( F `  B )  +  -u ( F `  A ) ) )
10926, 7ffvelrnd 5839 . . 3  |-  ( ph  ->  ( F `  B
)  e.  CC )
11034a1i 11 . . . 4  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  t )  e.  _V )
111110, 48itgcl 21241 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  e.  CC )
112109, 111pncan3d 9714 . 2  |-  ( ph  ->  ( ( F `  B )  +  ( S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 B ) ) )  =  S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t )
11326, 92ffvelrnd 5839 . . 3  |-  ( ph  ->  ( F `  A
)  e.  CC )
114109, 113negsubd 9717 . 2  |-  ( ph  ->  ( ( F `  B )  +  -u ( F `  A ) )  =  ( ( F `  B )  -  ( F `  A ) ) )
115108, 112, 1143eqtr3d 2478 1  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2967    C_ wss 3323   (/)c0 3632   {csn 3872   {cpr 3874   class class class wbr 4287    e. cmpt 4345    X. cxp 4833   dom cdm 4835   ran crn 4836   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274    + caddc 9277   RR*cxr 9409    <_ cle 9411    - cmin 9587   -ucneg 9588   (,)cioo 11292   [,]cicc 11295   TopOpenctopn 14352   topGenctg 14368  ℂfldccnfld 17798   intcnt 18601    Cn ccn 18808    tX ctx 19113   -cn->ccncf 20432   volcvol 20927   L^1cibl 21077   S.citg 21078    _D cdv 21318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cc 8596  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-disj 4258  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-ofr 6316  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-omul 6917  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-acn 8104  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-rlim 12959  df-sum 13156  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-cmp 18970  df-tx 19115  df-hmeo 19308  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-ovol 20928  df-vol 20929  df-mbf 21079  df-itg1 21080  df-itg2 21081  df-ibl 21082  df-itg 21083  df-0p 21128  df-limc 21321  df-dv 21322
This theorem is referenced by:  ftc2ditglem  21497  itgparts  21499  itgsubstlem  21500  itgpowd  29561  lhe4.4ex1a  29574  itgsin0pilem1  29761
  Copyright terms: Public domain W3C validator