MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem5 Structured version   Unicode version

Theorem ftc1lem5 21517
Description: Lemma for ftc1 21519. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L^1 )
ftc1.c  |-  ( ph  ->  C  e.  ( A (,) B ) )
ftc1.f  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
ftc1.j  |-  J  =  ( Lt  RR )
ftc1.k  |-  K  =  ( Lt  D )
ftc1.l  |-  L  =  ( TopOpen ` fld )
ftc1.h  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
ftc1.e  |-  ( ph  ->  E  e.  RR+ )
ftc1.r  |-  ( ph  ->  R  e.  RR+ )
ftc1.fc  |-  ( (
ph  /\  y  e.  D )  ->  (
( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
ftc1.x1  |-  ( ph  ->  X  e.  ( A [,] B ) )
ftc1.x2  |-  ( ph  ->  ( abs `  ( X  -  C )
)  <  R )
Assertion
Ref Expression
ftc1lem5  |-  ( (
ph  /\  X  =/=  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
Distinct variable groups:    x, t,
y, z, C    t, D, x, y, z    y, G, z    t, A, x, y, z    t, B, x, y, z    t, X, x, z    t, E, y    y, H    ph, t, x, y, z    t, F, x, y, z    x, L, y, z    y, R
Allowed substitution hints:    R( x, z, t)    E( x, z)    G( x, t)    H( x, z, t)    J( x, y, z, t)    K( x, y, z, t)    L( t)    X( y)

Proof of Theorem ftc1lem5
StepHypRef Expression
1 ftc1.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
2 ftc1.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
3 iccssre 11382 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3syl2anc 661 . . . . 5  |-  ( ph  ->  ( A [,] B
)  C_  RR )
5 ftc1.x1 . . . . 5  |-  ( ph  ->  X  e.  ( A [,] B ) )
64, 5sseldd 3362 . . . 4  |-  ( ph  ->  X  e.  RR )
7 ioossicc 11386 . . . . . 6  |-  ( A (,) B )  C_  ( A [,] B )
8 ftc1.c . . . . . 6  |-  ( ph  ->  C  e.  ( A (,) B ) )
97, 8sseldi 3359 . . . . 5  |-  ( ph  ->  C  e.  ( A [,] B ) )
104, 9sseldd 3362 . . . 4  |-  ( ph  ->  C  e.  RR )
116, 10lttri2d 9518 . . 3  |-  ( ph  ->  ( X  =/=  C  <->  ( X  <  C  \/  C  <  X ) ) )
1211biimpa 484 . 2  |-  ( (
ph  /\  X  =/=  C )  ->  ( X  <  C  \/  C  < 
X ) )
135adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  X  <  C )  ->  X  e.  ( A [,] B ) )
146adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  C )  ->  X  e.  RR )
15 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  C )  ->  X  <  C )
1614, 15ltned 9515 . . . . . . . . 9  |-  ( (
ph  /\  X  <  C )  ->  X  =/=  C )
17 eldifsn 4005 . . . . . . . . 9  |-  ( X  e.  ( ( A [,] B )  \  { C } )  <->  ( X  e.  ( A [,] B
)  /\  X  =/=  C ) )
1813, 16, 17sylanbrc 664 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  X  e.  ( ( A [,] B )  \  { C } ) )
19 fveq2 5696 . . . . . . . . . . 11  |-  ( z  =  X  ->  ( G `  z )  =  ( G `  X ) )
2019oveq1d 6111 . . . . . . . . . 10  |-  ( z  =  X  ->  (
( G `  z
)  -  ( G `
 C ) )  =  ( ( G `
 X )  -  ( G `  C ) ) )
21 oveq1 6103 . . . . . . . . . 10  |-  ( z  =  X  ->  (
z  -  C )  =  ( X  -  C ) )
2220, 21oveq12d 6114 . . . . . . . . 9  |-  ( z  =  X  ->  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  =  ( ( ( G `  X )  -  ( G `  C ) )  / 
( X  -  C
) ) )
23 ftc1.h . . . . . . . . 9  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
24 ovex 6121 . . . . . . . . 9  |-  ( ( ( G `  X
)  -  ( G `
 C ) )  /  ( X  -  C ) )  e. 
_V
2522, 23, 24fvmpt 5779 . . . . . . . 8  |-  ( X  e.  ( ( A [,] B )  \  { C } )  -> 
( H `  X
)  =  ( ( ( G `  X
)  -  ( G `
 C ) )  /  ( X  -  C ) ) )
2618, 25syl 16 . . . . . . 7  |-  ( (
ph  /\  X  <  C )  ->  ( H `  X )  =  ( ( ( G `  X )  -  ( G `  C )
)  /  ( X  -  C ) ) )
27 ftc1.g . . . . . . . . . . . 12  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
28 ftc1.le . . . . . . . . . . . 12  |-  ( ph  ->  A  <_  B )
29 ftc1.s . . . . . . . . . . . 12  |-  ( ph  ->  ( A (,) B
)  C_  D )
30 ftc1.d . . . . . . . . . . . 12  |-  ( ph  ->  D  C_  RR )
31 ftc1.i . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  L^1 )
32 ftc1.f . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
33 ftc1.j . . . . . . . . . . . . 13  |-  J  =  ( Lt  RR )
34 ftc1.k . . . . . . . . . . . . 13  |-  K  =  ( Lt  D )
35 ftc1.l . . . . . . . . . . . . 13  |-  L  =  ( TopOpen ` fld )
3627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35ftc1lem3 21515 . . . . . . . . . . . 12  |-  ( ph  ->  F : D --> CC )
3727, 1, 2, 28, 29, 30, 31, 36ftc1lem2 21513 . . . . . . . . . . 11  |-  ( ph  ->  G : ( A [,] B ) --> CC )
3837, 5ffvelrnd 5849 . . . . . . . . . 10  |-  ( ph  ->  ( G `  X
)  e.  CC )
3937, 9ffvelrnd 5849 . . . . . . . . . 10  |-  ( ph  ->  ( G `  C
)  e.  CC )
4038, 39subcld 9724 . . . . . . . . 9  |-  ( ph  ->  ( ( G `  X )  -  ( G `  C )
)  e.  CC )
4140adantr 465 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  ( ( G `  X )  -  ( G `  C ) )  e.  CC )
426recnd 9417 . . . . . . . . . 10  |-  ( ph  ->  X  e.  CC )
4310recnd 9417 . . . . . . . . . 10  |-  ( ph  ->  C  e.  CC )
4442, 43subcld 9724 . . . . . . . . 9  |-  ( ph  ->  ( X  -  C
)  e.  CC )
4544adantr 465 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  ( X  -  C )  e.  CC )
4642, 43subeq0ad 9734 . . . . . . . . . . 11  |-  ( ph  ->  ( ( X  -  C )  =  0  <-> 
X  =  C ) )
4746necon3bid 2648 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  -  C )  =/=  0  <->  X  =/=  C ) )
4847biimpar 485 . . . . . . . . 9  |-  ( (
ph  /\  X  =/=  C )  ->  ( X  -  C )  =/=  0
)
4916, 48syldan 470 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  ( X  -  C )  =/=  0
)
5041, 45, 49div2negd 10127 . . . . . . 7  |-  ( (
ph  /\  X  <  C )  ->  ( -u (
( G `  X
)  -  ( G `
 C ) )  /  -u ( X  -  C ) )  =  ( ( ( G `
 X )  -  ( G `  C ) )  /  ( X  -  C ) ) )
5138, 39negsubdi2d 9740 . . . . . . . . 9  |-  ( ph  -> 
-u ( ( G `
 X )  -  ( G `  C ) )  =  ( ( G `  C )  -  ( G `  X ) ) )
5242, 43negsubdi2d 9740 . . . . . . . . 9  |-  ( ph  -> 
-u ( X  -  C )  =  ( C  -  X ) )
5351, 52oveq12d 6114 . . . . . . . 8  |-  ( ph  ->  ( -u ( ( G `  X )  -  ( G `  C ) )  /  -u ( X  -  C
) )  =  ( ( ( G `  C )  -  ( G `  X )
)  /  ( C  -  X ) ) )
5453adantr 465 . . . . . . 7  |-  ( (
ph  /\  X  <  C )  ->  ( -u (
( G `  X
)  -  ( G `
 C ) )  /  -u ( X  -  C ) )  =  ( ( ( G `
 C )  -  ( G `  X ) )  /  ( C  -  X ) ) )
5526, 50, 543eqtr2d 2481 . . . . . 6  |-  ( (
ph  /\  X  <  C )  ->  ( H `  X )  =  ( ( ( G `  C )  -  ( G `  X )
)  /  ( C  -  X ) ) )
5655oveq1d 6111 . . . . 5  |-  ( (
ph  /\  X  <  C )  ->  ( ( H `  X )  -  ( F `  C ) )  =  ( ( ( ( G `  C )  -  ( G `  X ) )  / 
( C  -  X
) )  -  ( F `  C )
) )
5756fveq2d 5700 . . . 4  |-  ( (
ph  /\  X  <  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  =  ( abs `  ( ( ( ( G `  C )  -  ( G `  X )
)  /  ( C  -  X ) )  -  ( F `  C ) ) ) )
58 ftc1.e . . . . 5  |-  ( ph  ->  E  e.  RR+ )
59 ftc1.r . . . . 5  |-  ( ph  ->  R  e.  RR+ )
60 ftc1.fc . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
61 ftc1.x2 . . . . 5  |-  ( ph  ->  ( abs `  ( X  -  C )
)  <  R )
6243subidd 9712 . . . . . . 7  |-  ( ph  ->  ( C  -  C
)  =  0 )
6362abs00bd 12785 . . . . . 6  |-  ( ph  ->  ( abs `  ( C  -  C )
)  =  0 )
6459rpgt0d 11035 . . . . . 6  |-  ( ph  ->  0  <  R )
6563, 64eqbrtrd 4317 . . . . 5  |-  ( ph  ->  ( abs `  ( C  -  C )
)  <  R )
6627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 58, 59, 60, 5, 61, 9, 65ftc1lem4 21516 . . . 4  |-  ( (
ph  /\  X  <  C )  ->  ( abs `  ( ( ( ( G `  C )  -  ( G `  X ) )  / 
( C  -  X
) )  -  ( F `  C )
) )  <  E
)
6757, 66eqbrtrd 4317 . . 3  |-  ( (
ph  /\  X  <  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
685adantr 465 . . . . . . . 8  |-  ( (
ph  /\  C  <  X )  ->  X  e.  ( A [,] B ) )
6910adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  C  <  X )  ->  C  e.  RR )
70 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  C  <  X )  ->  C  <  X )
7169, 70gtned 9514 . . . . . . . 8  |-  ( (
ph  /\  C  <  X )  ->  X  =/=  C )
7268, 71, 17sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  C  <  X )  ->  X  e.  ( ( A [,] B )  \  { C } ) )
7372, 25syl 16 . . . . . 6  |-  ( (
ph  /\  C  <  X )  ->  ( H `  X )  =  ( ( ( G `  X )  -  ( G `  C )
)  /  ( X  -  C ) ) )
7473oveq1d 6111 . . . . 5  |-  ( (
ph  /\  C  <  X )  ->  ( ( H `  X )  -  ( F `  C ) )  =  ( ( ( ( G `  X )  -  ( G `  C ) )  / 
( X  -  C
) )  -  ( F `  C )
) )
7574fveq2d 5700 . . . 4  |-  ( (
ph  /\  C  <  X )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  =  ( abs `  ( ( ( ( G `  X )  -  ( G `  C )
)  /  ( X  -  C ) )  -  ( F `  C ) ) ) )
7627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 58, 59, 60, 9, 65, 5, 61ftc1lem4 21516 . . . 4  |-  ( (
ph  /\  C  <  X )  ->  ( abs `  ( ( ( ( G `  X )  -  ( G `  C ) )  / 
( X  -  C
) )  -  ( F `  C )
) )  <  E
)
7775, 76eqbrtrd 4317 . . 3  |-  ( (
ph  /\  C  <  X )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
7867, 77jaodan 783 . 2  |-  ( (
ph  /\  ( X  <  C  \/  C  < 
X ) )  -> 
( abs `  (
( H `  X
)  -  ( F `
 C ) ) )  <  E )
7912, 78syldan 470 1  |-  ( (
ph  /\  X  =/=  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611    \ cdif 3330    C_ wss 3333   {csn 3882   class class class wbr 4297    e. cmpt 4355   ` cfv 5423  (class class class)co 6096   CCcc 9285   RRcr 9286   0cc0 9287    < clt 9423    <_ cle 9424    - cmin 9600   -ucneg 9601    / cdiv 9998   RR+crp 10996   (,)cioo 11305   [,]cicc 11308   abscabs 12728   ↾t crest 14364   TopOpenctopn 14365  ℂfldccnfld 17823    CnP ccnp 18834   L^1cibl 21102   S.citg 21103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cc 8609  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366  ax-mulf 9367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-disj 4268  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-ofr 6326  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-omul 6930  df-er 7106  df-map 7221  df-pm 7222  df-ixp 7269  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-fi 7666  df-sup 7696  df-oi 7729  df-card 8114  df-acn 8117  df-cda 8342  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-q 10959  df-rp 10997  df-xneg 11094  df-xadd 11095  df-xmul 11096  df-ioo 11309  df-ioc 11310  df-ico 11311  df-icc 11312  df-fz 11443  df-fzo 11554  df-fl 11647  df-mod 11714  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-clim 12971  df-rlim 12972  df-sum 13169  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-starv 14258  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-unif 14266  df-hom 14267  df-cco 14268  df-rest 14366  df-topn 14367  df-0g 14385  df-gsum 14386  df-topgen 14387  df-pt 14388  df-prds 14391  df-xrs 14445  df-qtop 14450  df-imas 14451  df-xps 14453  df-mre 14529  df-mrc 14530  df-acs 14532  df-mnd 15420  df-submnd 15470  df-mulg 15553  df-cntz 15840  df-cmn 16284  df-psmet 17814  df-xmet 17815  df-met 17816  df-bl 17817  df-mopn 17818  df-cnfld 17824  df-top 18508  df-bases 18510  df-topon 18511  df-topsp 18512  df-cn 18836  df-cnp 18837  df-cmp 18995  df-tx 19140  df-hmeo 19333  df-xms 19900  df-ms 19901  df-tms 19902  df-cncf 20459  df-ovol 20953  df-vol 20954  df-mbf 21104  df-itg1 21105  df-itg2 21106  df-ibl 21107  df-itg 21108  df-0p 21153
This theorem is referenced by:  ftc1lem6  21518
  Copyright terms: Public domain W3C validator