Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnc Structured version   Visualization version   Unicode version

Theorem ftc1cnnc 32080
Description: Choice-free proof of ftc1cn 23074. (Contributed by Brendan Leahy, 20-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1cnnc.a  |-  ( ph  ->  A  e.  RR )
ftc1cnnc.b  |-  ( ph  ->  B  e.  RR )
ftc1cnnc.le  |-  ( ph  ->  A  <_  B )
ftc1cnnc.f  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
ftc1cnnc.i  |-  ( ph  ->  F  e.  L^1 )
Assertion
Ref Expression
ftc1cnnc  |-  ( ph  ->  ( RR  _D  G
)  =  F )
Distinct variable groups:    x, t, A    x, B, t    x, F, t    ph, x, t
Allowed substitution hints:    G( x, t)

Proof of Theorem ftc1cnnc
Dummy variables  y 
z  s  u  v  w  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 22941 . . . . 5  |-  ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC
21a1i 11 . . . 4  |-  ( ph  ->  ( RR  _D  G
) : dom  ( RR  _D  G ) --> CC )
3 ffun 5742 . . . 4  |-  ( ( RR  _D  G ) : dom  ( RR 
_D  G ) --> CC 
->  Fun  ( RR  _D  G ) )
42, 3syl 17 . . 3  |-  ( ph  ->  Fun  ( RR  _D  G ) )
5 ax-resscn 9614 . . . . . . 7  |-  RR  C_  CC
65a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
7 ftc1cnnc.g . . . . . . 7  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
8 ftc1cnnc.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
9 ftc1cnnc.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
10 ftc1cnnc.le . . . . . . 7  |-  ( ph  ->  A  <_  B )
11 ssid 3437 . . . . . . . 8  |-  ( A (,) B )  C_  ( A (,) B )
1211a1i 11 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
13 ioossre 11721 . . . . . . . 8  |-  ( A (,) B )  C_  RR
1413a1i 11 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  RR )
15 ftc1cnnc.i . . . . . . 7  |-  ( ph  ->  F  e.  L^1 )
16 ftc1cnnc.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
17 cncff 22003 . . . . . . . 8  |-  ( F  e.  ( ( A (,) B ) -cn-> CC )  ->  F :
( A (,) B
) --> CC )
1816, 17syl 17 . . . . . . 7  |-  ( ph  ->  F : ( A (,) B ) --> CC )
197, 8, 9, 10, 12, 14, 15, 18ftc1lem2 23067 . . . . . 6  |-  ( ph  ->  G : ( A [,] B ) --> CC )
20 iccssre 11741 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
218, 9, 20syl2anc 673 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
22 eqid 2471 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2322tgioo2 21899 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
246, 19, 21, 23, 22dvbssntr 22934 . . . . 5  |-  ( ph  ->  dom  ( RR  _D  G )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
25 iccntr 21917 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
268, 9, 25syl2anc 673 . . . . 5  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
2724, 26sseqtrd 3454 . . . 4  |-  ( ph  ->  dom  ( RR  _D  G )  C_  ( A (,) B ) )
28 retop 21860 . . . . . . . . . . . 12  |-  ( topGen ` 
ran  (,) )  e.  Top
2923, 28eqeltrri 2546 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )t  RR )  e.  Top
3029a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( TopOpen
` fld
)t 
RR )  e.  Top )
3121adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( A [,] B )  C_  RR )
32 iooretop 21864 . . . . . . . . . . . 12  |-  ( A (,) B )  e.  ( topGen `  ran  (,) )
3332, 23eleqtri 2547 . . . . . . . . . . 11  |-  ( A (,) B )  e.  ( ( TopOpen ` fld )t  RR )
3433a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( A (,) B )  e.  ( ( TopOpen ` fld )t  RR ) )
35 ioossicc 11745 . . . . . . . . . . 11  |-  ( A (,) B )  C_  ( A [,] B )
3635a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  ( A [,] B ) )
37 uniretop 21861 . . . . . . . . . . . 12  |-  RR  =  U. ( topGen `  ran  (,) )
3823unieqi 4199 . . . . . . . . . . . 12  |-  U. ( topGen `
 ran  (,) )  =  U. ( ( TopOpen ` fld )t  RR )
3937, 38eqtri 2493 . . . . . . . . . . 11  |-  RR  =  U. ( ( TopOpen ` fld )t  RR )
4039ssntr 20150 . . . . . . . . . 10  |-  ( ( ( ( ( TopOpen ` fld )t  RR )  e.  Top  /\  ( A [,] B )  C_  RR )  /\  (
( A (,) B
)  e.  ( (
TopOpen ` fld )t  RR )  /\  ( A (,) B )  C_  ( A [,] B ) ) )  ->  ( A (,) B )  C_  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  ( A [,] B ) ) )
4130, 31, 34, 36, 40syl22anc 1293 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  (
( int `  (
( TopOpen ` fld )t  RR ) ) `  ( A [,] B ) ) )
42 simpr 468 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  ( A (,) B ) )
4341, 42sseldd 3419 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  ( A [,] B ) ) )
4418ffvelrnda 6037 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  CC )
45 cnxmet 21871 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
4613, 5sstri 3427 . . . . . . . . . . . . . 14  |-  ( A (,) B )  C_  CC
47 xmetres2 21454 . . . . . . . . . . . . . 14  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( A (,) B ) 
C_  CC )  -> 
( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) )  e.  ( *Met `  ( A (,) B
) ) )
4845, 46, 47mp2an 686 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) )  e.  ( *Met `  ( A (,) B ) )
4948a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  (
( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) )  e.  ( *Met `  ( A (,) B ) ) )
5045a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
51 ssid 3437 . . . . . . . . . . . . . . . . 17  |-  CC  C_  CC
52 eqid 2471 . . . . . . . . . . . . . . . . . 18  |-  ( (
TopOpen ` fld )t  ( A (,) B
) )  =  ( ( TopOpen ` fld )t  ( A (,) B ) )
5322cnfldtop 21882 . . . . . . . . . . . . . . . . . . . 20  |-  ( TopOpen ` fld )  e.  Top
5422cnfldtopon 21881 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
5554toponunii 20024 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  =  U. ( TopOpen ` fld )
5655restid 15410 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
5753, 56ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
5857eqcomi 2480 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
5922, 52, 58cncfcn 22019 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A (,) B
)  C_  CC  /\  CC  C_  CC )  ->  (
( A (,) B
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
6046, 51, 59mp2an 686 . . . . . . . . . . . . . . . 16  |-  ( ( A (,) B )
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) )
6116, 60syl6eleq 2559 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
62 resttopon 20254 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( A (,) B )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( A (,) B
) )  e.  (TopOn `  ( A (,) B
) ) )
6354, 46, 62mp2an 686 . . . . . . . . . . . . . . . . . 18  |-  ( (
TopOpen ` fld )t  ( A (,) B
) )  e.  (TopOn `  ( A (,) B
) )
6463toponunii 20024 . . . . . . . . . . . . . . . . 17  |-  ( A (,) B )  = 
U. ( ( TopOpen ` fld )t  ( A (,) B ) )
6564eleq2i 2541 . . . . . . . . . . . . . . . 16  |-  ( c  e.  ( A (,) B )  <->  c  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )
6665biimpi 199 . . . . . . . . . . . . . . 15  |-  ( c  e.  ( A (,) B )  ->  c  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )
67 eqid 2471 . . . . . . . . . . . . . . . 16  |-  U. (
( TopOpen ` fld )t  ( A (,) B ) )  = 
U. ( ( TopOpen ` fld )t  ( A (,) B ) )
6867cncnpi 20371 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) )  /\  c  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  c
) )
6961, 66, 68syl2an 485 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  c
) )
70 eqid 2471 . . . . . . . . . . . . . . . . . 18  |-  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) )  =  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) )
7122cnfldtopn 21880 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
72 eqid 2471 . . . . . . . . . . . . . . . . . 18  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )
7370, 71, 72metrest 21617 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( A (,) B ) 
C_  CC )  -> 
( ( TopOpen ` fld )t  ( A (,) B ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) ) )
7445, 46, 73mp2an 686 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )t  ( A (,) B
) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  (
( A (,) B
)  X.  ( A (,) B ) ) ) )
7574oveq1i 6318 . . . . . . . . . . . . . . 15  |-  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  CnP  ( TopOpen ` fld ) )  =  ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )  CnP  ( TopOpen
` fld
) )
7675fveq1i 5880 . . . . . . . . . . . . . 14  |-  ( ( ( ( TopOpen ` fld )t  ( A (,) B ) )  CnP  ( TopOpen ` fld ) ) `  c
)  =  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )  CnP  ( TopOpen
` fld
) ) `  c
)
7769, 76syl6eleq 2559 . . . . . . . . . . . . 13  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )  CnP  ( TopOpen ` fld )
) `  c )
)
7877adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )  CnP  ( TopOpen ` fld )
) `  c )
)
79 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  w  e.  RR+ )
8072, 71metcnpi2 21638 . . . . . . . . . . . 12  |-  ( ( ( ( ( abs 
o.  -  )  |`  (
( A (,) B
)  X.  ( A (,) B ) ) )  e.  ( *Met `  ( A (,) B ) )  /\  ( abs  o.  -  )  e.  ( *Met `  CC ) )  /\  ( F  e.  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  (
( A (,) B
)  X.  ( A (,) B ) ) ) )  CnP  ( TopOpen
` fld
) ) `  c
)  /\  w  e.  RR+ ) )  ->  E. v  e.  RR+  A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )
)
8149, 50, 78, 79, 80syl22anc 1293 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  E. v  e.  RR+  A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )
)
82 simpr 468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  ->  u  e.  ( A (,) B ) )
83 simpllr 777 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
c  e.  ( A (,) B ) )
8482, 83ovresd 6456 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  =  ( u ( abs 
o.  -  ) c
) )
85 elioore 11691 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  e.  ( A (,) B )  ->  u  e.  RR )
8685recnd 9687 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  ( A (,) B )  ->  u  e.  CC )
8786adantl 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  ->  u  e.  CC )
8846sseli 3414 . . . . . . . . . . . . . . . . . . . 20  |-  ( c  e.  ( A (,) B )  ->  c  e.  CC )
8988ad3antlr 745 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
c  e.  CC )
90 eqid 2471 . . . . . . . . . . . . . . . . . . . 20  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
9190cnmetdval 21869 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  CC  /\  c  e.  CC )  ->  ( u ( abs 
o.  -  ) c
)  =  ( abs `  ( u  -  c
) ) )
9287, 89, 91syl2anc 673 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( u ( abs 
o.  -  ) c
)  =  ( abs `  ( u  -  c
) ) )
9384, 92eqtrd 2505 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  =  ( abs `  (
u  -  c ) ) )
9493breq1d 4405 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B
) ) ) c )  <  v  <->  ( abs `  ( u  -  c
) )  <  v
) )
9518ad2antrr 740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  ->  F : ( A (,) B ) --> CC )
9695ffvelrnda 6037 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( F `  u
)  e.  CC )
9744ad2antrr 740 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( F `  c
)  e.  CC )
9890cnmetdval 21869 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F `  u
)  e.  CC  /\  ( F `  c )  e.  CC )  -> 
( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  =  ( abs `  ( ( F `  u )  -  ( F `  c )
) ) )
9996, 97, 98syl2anc 673 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  =  ( abs `  ( ( F `  u )  -  ( F `  c )
) ) )
10099breq1d 4405 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( ( ( F `
 u ) ( abs  o.  -  )
( F `  c
) )  <  w  <->  ( abs `  ( ( F `  u )  -  ( F `  c ) ) )  <  w ) )
10194, 100imbi12d 327 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )  <->  ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) ) )
102101ralbidva 2828 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  -> 
( A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )  <->  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) ) )
103 simprll 780 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  z  e.  ( ( A [,] B )  \  {
c } ) )
104 eldifsni 4089 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( ( A [,] B )  \  { c } )  ->  z  =/=  c
)
105103, 104syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  z  =/=  c )
10621ssdifssd 3560 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( A [,] B )  \  {
c } )  C_  RR )
107106sselda 3418 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  z  e.  ( ( A [,] B )  \  {
c } ) )  ->  z  e.  RR )
108107ad2ant2r 761 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  (
z  e.  ( ( A [,] B ) 
\  { c } )  /\  A. u  e.  ( A (,) B
) ( ( abs `  ( u  -  c
) )  <  v  ->  ( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) ) )  ->  z  e.  RR )
109108ad2ant2r 761 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  z  e.  RR )
110 elioore 11691 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( c  e.  ( A (,) B )  ->  c  e.  RR )
111110ad3antlr 745 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  c  e.  RR )
112109, 111lttri2d 9791 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  (
z  =/=  c  <->  ( z  <  c  \/  c  < 
z ) ) )
113112biimpa 492 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  =/=  c )  -> 
( z  <  c  \/  c  <  z ) )
114 fveq2 5879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( s  =  z  ->  ( G `  s )  =  ( G `  z ) )
115114oveq1d 6323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( s  =  z  ->  (
( G `  s
)  -  ( G `
 c ) )  =  ( ( G `
 z )  -  ( G `  c ) ) )
116 oveq1 6315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( s  =  z  ->  (
s  -  c )  =  ( z  -  c ) )
117115, 116oveq12d 6326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( s  =  z  ->  (
( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) )  =  ( ( ( G `  z )  -  ( G `  c ) )  / 
( z  -  c
) ) )
118 eqid 2471 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) )  =  ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) )
119 ovex 6336 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( G `  z
)  -  ( G `
 c ) )  /  ( z  -  c ) )  e. 
_V
120117, 118, 119fvmpt 5963 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  e.  ( ( A [,] B )  \  { c } )  ->  ( ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) ) `  z )  =  ( ( ( G `  z )  -  ( G `  c ) )  / 
( z  -  c
) ) )
121120ad2antrr 740 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v )  ->  (
( s  e.  ( ( A [,] B
)  \  { c } )  |->  ( ( ( G `  s
)  -  ( G `
 c ) )  /  ( s  -  c ) ) ) `
 z )  =  ( ( ( G `
 z )  -  ( G `  c ) )  /  ( z  -  c ) ) )
122121ad2antlr 741 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  =  ( ( ( G `  z )  -  ( G `  c ) )  / 
( z  -  c
) ) )
12319ad4antr 746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  ->  G : ( A [,] B ) --> CC )
124 eldifi 3544 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  e.  ( ( A [,] B )  \  { c } )  ->  z  e.  ( A [,] B ) )
125124ad2antrr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v )  ->  z  e.  ( A [,] B
) )
126125ad2antlr 741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
z  e.  ( A [,] B ) )
127123, 126ffvelrnd 6038 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( G `  z
)  e.  CC )
12835sseli 3414 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( c  e.  ( A (,) B )  ->  c  e.  ( A [,] B
) )
12919ffvelrnda 6037 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  ( G `  c )  e.  CC )
130128, 129sylan2 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( G `  c )  e.  CC )
131130ad3antrrr 744 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( G `  c
)  e.  CC )
132109adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
z  e.  RR )
133132recnd 9687 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
z  e.  CC )
13488ad4antlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
c  e.  CC )
135 ltne 9748 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  RR  /\  z  <  c )  -> 
c  =/=  z )
136135necomd 2698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  RR  /\  z  <  c )  -> 
z  =/=  c )
137109, 136sylan 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
z  =/=  c )
138127, 131, 133, 134, 137div2subd 10455 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( ( ( G `
 z )  -  ( G `  c ) )  /  ( z  -  c ) )  =  ( ( ( G `  c )  -  ( G `  z ) )  / 
( c  -  z
) ) )
139122, 138eqtrd 2505 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  =  ( ( ( G `  c )  -  ( G `  z ) )  / 
( c  -  z
) ) )
140139oveq1d 6323 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( ( ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) )  =  ( ( ( ( G `  c )  -  ( G `  z ) )  / 
( c  -  z
) )  -  ( F `  c )
) )
141140fveq2d 5883 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  =  ( abs `  (
( ( ( G `
 c )  -  ( G `  z ) )  /  ( c  -  z ) )  -  ( F `  c ) ) ) )
1428ad3antrrr 744 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  A  e.  RR )
1439ad3antrrr 744 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  B  e.  RR )
14410ad3antrrr 744 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  A  <_  B )
14516ad3antrrr 744 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  F  e.  ( ( A (,) B ) -cn-> CC ) )
14615ad3antrrr 744 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  F  e.  L^1 )
147 simpllr 777 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  c  e.  ( A (,) B
) )
148 simplrl 778 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  w  e.  RR+ )
149 simplrr 779 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  v  e.  RR+ )
150 simprlr 781 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  A. u  e.  ( A (,) B
) ( ( abs `  ( u  -  c
) )  <  v  ->  ( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )
151 oveq1 6315 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( u  =  y  ->  (
u  -  c )  =  ( y  -  c ) )
152151fveq2d 5883 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( u  =  y  ->  ( abs `  ( u  -  c ) )  =  ( abs `  (
y  -  c ) ) )
153152breq1d 4405 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  y  ->  (
( abs `  (
u  -  c ) )  <  v  <->  ( abs `  ( y  -  c
) )  <  v
) )
154 fveq2 5879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( u  =  y  ->  ( F `  u )  =  ( F `  y ) )
155154oveq1d 6323 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( u  =  y  ->  (
( F `  u
)  -  ( F `
 c ) )  =  ( ( F `
 y )  -  ( F `  c ) ) )
156155fveq2d 5883 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( u  =  y  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  c ) ) ) )
157156breq1d 4405 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  y  ->  (
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w  <->  ( abs `  ( ( F `  y )  -  ( F `  c )
) )  <  w
) )
158153, 157imbi12d 327 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( u  =  y  ->  (
( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w )  <-> 
( ( abs `  (
y  -  c ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 c ) ) )  <  w ) ) )
159158rspccva 3135 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w )  /\  y  e.  ( A (,) B ) )  ->  ( ( abs `  ( y  -  c ) )  < 
v  ->  ( abs `  ( ( F `  y )  -  ( F `  c )
) )  <  w
) )
160150, 159sylan 479 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  y  e.  ( A (,) B ) )  -> 
( ( abs `  (
y  -  c ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 c ) ) )  <  w ) )
161103, 124syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  z  e.  ( A [,] B
) )
162 simprr 774 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  ( abs `  ( z  -  c ) )  < 
v )
163128ad3antlr 745 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  c  e.  ( A [,] B
) )
164110recnd 9687 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( c  e.  ( A (,) B )  ->  c  e.  CC )
165164subidd 9993 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( c  e.  ( A (,) B )  ->  (
c  -  c )  =  0 )
166165abs00bd 13431 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( c  e.  ( A (,) B )  ->  ( abs `  ( c  -  c ) )  =  0 )
167166ad3antlr 745 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  ( abs `  ( c  -  c ) )  =  0 )
168149rpgt0d 11367 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  0  <  v )
169167, 168eqbrtrd 4416 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  ( abs `  ( c  -  c ) )  < 
v )
1707, 142, 143, 144, 145, 146, 147, 118, 148, 149, 160, 161, 162, 163, 169ftc1cnnclem 32079 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( abs `  (
( ( ( G `
 c )  -  ( G `  z ) )  /  ( c  -  z ) )  -  ( F `  c ) ) )  <  w )
171141, 170eqbrtrd 4416 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w )
172120oveq1d 6323 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  ( ( A [,] B )  \  { c } )  ->  ( ( ( s  e.  ( ( A [,] B ) 
\  { c } )  |->  ( ( ( G `  s )  -  ( G `  c ) )  / 
( s  -  c
) ) ) `  z )  -  ( F `  c )
)  =  ( ( ( ( G `  z )  -  ( G `  c )
)  /  ( z  -  c ) )  -  ( F `  c ) ) )
173172fveq2d 5883 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  e.  ( ( A [,] B )  \  { c } )  ->  ( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  =  ( abs `  (
( ( ( G `
 z )  -  ( G `  c ) )  /  ( z  -  c ) )  -  ( F `  c ) ) ) )
174173ad2antrr 740 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v )  ->  ( abs `  ( ( ( s  e.  ( ( A [,] B ) 
\  { c } )  |->  ( ( ( G `  s )  -  ( G `  c ) )  / 
( s  -  c
) ) ) `  z )  -  ( F `  c )
) )  =  ( abs `  ( ( ( ( G `  z )  -  ( G `  c )
)  /  ( z  -  c ) )  -  ( F `  c ) ) ) )
175174ad2antlr 741 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  c  <  z )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  =  ( abs `  (
( ( ( G `
 z )  -  ( G `  c ) )  /  ( z  -  c ) )  -  ( F `  c ) ) ) )
1767, 142, 143, 144, 145, 146, 147, 118, 148, 149, 160, 163, 169, 161, 162ftc1cnnclem 32079 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  c  <  z )  -> 
( abs `  (
( ( ( G `
 z )  -  ( G `  c ) )  /  ( z  -  c ) )  -  ( F `  c ) ) )  <  w )
177175, 176eqbrtrd 4416 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  c  <  z )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w )
178171, 177jaodan 802 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  ( z  <  c  \/  c  <  z ) )  ->  ( abs `  ( ( ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w )
179113, 178syldan 478 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  =/=  c )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w )
180105, 179mpdan 681 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  ( abs `  ( ( ( s  e.  ( ( A [,] B ) 
\  { c } )  |->  ( ( ( G `  s )  -  ( G `  c ) )  / 
( s  -  c
) ) ) `  z )  -  ( F `  c )
) )  <  w
)
181180expr 626 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) ) )  -> 
( ( abs `  (
z  -  c ) )  <  v  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) )
182181adantld 474 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) ) )  -> 
( ( z  =/=  c  /\  ( abs `  ( z  -  c
) )  <  v
)  ->  ( abs `  ( ( ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) )
183182expr 626 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  z  e.  ( ( A [,] B )  \  { c } ) )  ->  ( A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
)  ->  ( (
z  =/=  c  /\  ( abs `  ( z  -  c ) )  <  v )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) ) )
184183ralrimdva 2812 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  -> 
( A. u  e.  ( A (,) B
) ( ( abs `  ( u  -  c
) )  <  v  ->  ( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w )  ->  A. z  e.  ( ( A [,] B
)  \  { c } ) ( ( z  =/=  c  /\  ( abs `  ( z  -  c ) )  <  v )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) ) )
185102, 184sylbid 223 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  -> 
( A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )  ->  A. z  e.  ( ( A [,] B
)  \  { c } ) ( ( z  =/=  c  /\  ( abs `  ( z  -  c ) )  <  v )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) ) )
186185anassrs 660 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  w  e.  RR+ )  /\  v  e.  RR+ )  -> 
( A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )  ->  A. z  e.  ( ( A [,] B
)  \  { c } ) ( ( z  =/=  c  /\  ( abs `  ( z  -  c ) )  <  v )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) ) )
187186reximdva 2858 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  ( E. v  e.  RR+  A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )  ->  E. v  e.  RR+  A. z  e.  ( ( A [,] B ) 
\  { c } ) ( ( z  =/=  c  /\  ( abs `  ( z  -  c ) )  < 
v )  ->  ( abs `  ( ( ( s  e.  ( ( A [,] B ) 
\  { c } )  |->  ( ( ( G `  s )  -  ( G `  c ) )  / 
( s  -  c
) ) ) `  z )  -  ( F `  c )
) )  <  w
) ) )
18881, 187mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  E. v  e.  RR+  A. z  e.  ( ( A [,] B )  \  {
c } ) ( ( z  =/=  c  /\  ( abs `  (
z  -  c ) )  <  v )  ->  ( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) )
189188ralrimiva 2809 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  A. w  e.  RR+  E. v  e.  RR+  A. z  e.  ( ( A [,] B
)  \  { c } ) ( ( z  =/=  c  /\  ( abs `  ( z  -  c ) )  <  v )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) )
19019adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  G :
( A [,] B
) --> CC )
19121, 5syl6ss 3430 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A [,] B
)  C_  CC )
192191adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( A [,] B )  C_  CC )
193128adantl 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  ( A [,] B ) )
194190, 192, 193dvlem 22930 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  s  e.  ( ( A [,] B )  \  {
c } ) )  ->  ( ( ( G `  s )  -  ( G `  c ) )  / 
( s  -  c
) )  e.  CC )
195194, 118fmptd 6061 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) : ( ( A [,] B ) 
\  { c } ) --> CC )
196191ssdifssd 3560 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A [,] B )  \  {
c } )  C_  CC )
197196adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( A [,] B )  \  { c } ) 
C_  CC )
19888adantl 473 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  CC )
199195, 197, 198ellimc3 22913 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( F `  c )  e.  ( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) lim CC  c )  <-> 
( ( F `  c )  e.  CC  /\ 
A. w  e.  RR+  E. v  e.  RR+  A. z  e.  ( ( A [,] B )  \  {
c } ) ( ( z  =/=  c  /\  ( abs `  (
z  -  c ) )  <  v )  ->  ( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) ) ) )
20044, 189, 199mpbir2and 936 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  ( ( s  e.  ( ( A [,] B
)  \  { c } )  |->  ( ( ( G `  s
)  -  ( G `
 c ) )  /  ( s  -  c ) ) ) lim
CC  c ) )
201 eqid 2471 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  RR )  =  ( ( TopOpen ` fld )t  RR )
202201, 22, 118, 6, 19, 21eldv 22932 . . . . . . . . 9  |-  ( ph  ->  ( c ( RR 
_D  G ) ( F `  c )  <-> 
( c  e.  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  ( A [,] B ) )  /\  ( F `
 c )  e.  ( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) lim CC  c ) ) ) )
203202adantr 472 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( c
( RR  _D  G
) ( F `  c )  <->  ( c  e.  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  ( A [,] B ) )  /\  ( F `
 c )  e.  ( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) lim CC  c ) ) ) )
20443, 200, 203mpbir2and 936 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c ( RR  _D  G ) ( F `  c ) )
205 vex 3034 . . . . . . . 8  |-  c  e. 
_V
206 fvex 5889 . . . . . . . 8  |-  ( F `
 c )  e. 
_V
207205, 206breldm 5045 . . . . . . 7  |-  ( c ( RR  _D  G
) ( F `  c )  ->  c  e.  dom  ( RR  _D  G ) )
208204, 207syl 17 . . . . . 6  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  dom  ( RR  _D  G
) )
209208ex 441 . . . . 5  |-  ( ph  ->  ( c  e.  ( A (,) B )  ->  c  e.  dom  ( RR  _D  G
) ) )
210209ssrdv 3424 . . . 4  |-  ( ph  ->  ( A (,) B
)  C_  dom  ( RR 
_D  G ) )
21127, 210eqssd 3435 . . 3  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
212 df-fn 5592 . . 3  |-  ( ( RR  _D  G )  Fn  ( A (,) B )  <->  ( Fun  ( RR  _D  G
)  /\  dom  ( RR 
_D  G )  =  ( A (,) B
) ) )
2134, 211, 212sylanbrc 677 . 2  |-  ( ph  ->  ( RR  _D  G
)  Fn  ( A (,) B ) )
214 ffn 5739 . . 3  |-  ( F : ( A (,) B ) --> CC  ->  F  Fn  ( A (,) B ) )
21518, 214syl 17 . 2  |-  ( ph  ->  F  Fn  ( A (,) B ) )
2164adantr 472 . . 3  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  Fun  ( RR 
_D  G ) )
217 funbrfv 5917 . . 3  |-  ( Fun  ( RR  _D  G
)  ->  ( c
( RR  _D  G
) ( F `  c )  ->  (
( RR  _D  G
) `  c )  =  ( F `  c ) ) )
218216, 204, 217sylc 61 . 2  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  c )  =  ( F `  c ) )
219213, 215, 218eqfnfvd 5994 1  |-  ( ph  ->  ( RR  _D  G
)  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757    \ cdif 3387    C_ wss 3390   {csn 3959   U.cuni 4190   class class class wbr 4395    |-> cmpt 4454    X. cxp 4837   dom cdm 4839   ran crn 4840    |` cres 4841    o. ccom 4843   Fun wfun 5583    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   RR+crp 11325   (,)cioo 11660   [,]cicc 11663   abscabs 13374   ↾t crest 15397   TopOpenctopn 15398   topGenctg 15414   *Metcxmt 19032   MetOpencmopn 19037  ℂfldccnfld 19047   Topctop 19994  TopOnctopon 19995   intcnt 20109    Cn ccn 20317    CnP ccnp 20318   -cn->ccncf 21986   L^1cibl 22654   S.citg 22655   lim CC climc 22896    _D cdv 22897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-ofr 6551  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-omul 7205  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-rlim 13630  df-sum 13830  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-ovol 22494  df-vol 22496  df-mbf 22656  df-itg1 22657  df-itg2 22658  df-ibl 22659  df-itg 22660  df-0p 22707  df-limc 22900  df-dv 22901
This theorem is referenced by:  ftc2nc  32090
  Copyright terms: Public domain W3C validator