Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnc Structured version   Unicode version

Theorem ftc1cnnc 29653
Description: Choice-free proof of ftc1cn 22172. (Contributed by Brendan Leahy, 20-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1cnnc.a  |-  ( ph  ->  A  e.  RR )
ftc1cnnc.b  |-  ( ph  ->  B  e.  RR )
ftc1cnnc.le  |-  ( ph  ->  A  <_  B )
ftc1cnnc.f  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
ftc1cnnc.i  |-  ( ph  ->  F  e.  L^1 )
Assertion
Ref Expression
ftc1cnnc  |-  ( ph  ->  ( RR  _D  G
)  =  F )
Distinct variable groups:    x, t, A    x, B, t    x, F, t    ph, x, t
Allowed substitution hints:    G( x, t)

Proof of Theorem ftc1cnnc
Dummy variables  y 
z  s  u  v  w  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 22039 . . . . 5  |-  ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC
21a1i 11 . . . 4  |-  ( ph  ->  ( RR  _D  G
) : dom  ( RR  _D  G ) --> CC )
3 ffun 5724 . . . 4  |-  ( ( RR  _D  G ) : dom  ( RR 
_D  G ) --> CC 
->  Fun  ( RR  _D  G ) )
42, 3syl 16 . . 3  |-  ( ph  ->  Fun  ( RR  _D  G ) )
5 ax-resscn 9538 . . . . . . 7  |-  RR  C_  CC
65a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
7 ftc1cnnc.g . . . . . . 7  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
8 ftc1cnnc.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
9 ftc1cnnc.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
10 ftc1cnnc.le . . . . . . 7  |-  ( ph  ->  A  <_  B )
11 ssid 3516 . . . . . . . 8  |-  ( A (,) B )  C_  ( A (,) B )
1211a1i 11 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
13 ioossre 11575 . . . . . . . 8  |-  ( A (,) B )  C_  RR
1413a1i 11 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  RR )
15 ftc1cnnc.i . . . . . . 7  |-  ( ph  ->  F  e.  L^1 )
16 ftc1cnnc.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
17 cncff 21125 . . . . . . . 8  |-  ( F  e.  ( ( A (,) B ) -cn-> CC )  ->  F :
( A (,) B
) --> CC )
1816, 17syl 16 . . . . . . 7  |-  ( ph  ->  F : ( A (,) B ) --> CC )
197, 8, 9, 10, 12, 14, 15, 18ftc1lem2 22165 . . . . . 6  |-  ( ph  ->  G : ( A [,] B ) --> CC )
20 iccssre 11595 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
218, 9, 20syl2anc 661 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
22 eqid 2460 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2322tgioo2 21036 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
246, 19, 21, 23, 22dvbssntr 22032 . . . . 5  |-  ( ph  ->  dom  ( RR  _D  G )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
25 iccntr 21054 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
268, 9, 25syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
2724, 26sseqtrd 3533 . . . 4  |-  ( ph  ->  dom  ( RR  _D  G )  C_  ( A (,) B ) )
28 retop 20996 . . . . . . . . . . . 12  |-  ( topGen ` 
ran  (,) )  e.  Top
2923, 28eqeltrri 2545 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )t  RR )  e.  Top
3029a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( TopOpen
` fld
)t 
RR )  e.  Top )
3121adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( A [,] B )  C_  RR )
32 iooretop 21001 . . . . . . . . . . . 12  |-  ( A (,) B )  e.  ( topGen `  ran  (,) )
3332, 23eleqtri 2546 . . . . . . . . . . 11  |-  ( A (,) B )  e.  ( ( TopOpen ` fld )t  RR )
3433a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( A (,) B )  e.  ( ( TopOpen ` fld )t  RR ) )
35 ioossicc 11599 . . . . . . . . . . 11  |-  ( A (,) B )  C_  ( A [,] B )
3635a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  ( A [,] B ) )
37 uniretop 20997 . . . . . . . . . . . 12  |-  RR  =  U. ( topGen `  ran  (,) )
3823unieqi 4247 . . . . . . . . . . . 12  |-  U. ( topGen `
 ran  (,) )  =  U. ( ( TopOpen ` fld )t  RR )
3937, 38eqtri 2489 . . . . . . . . . . 11  |-  RR  =  U. ( ( TopOpen ` fld )t  RR )
4039ssntr 19318 . . . . . . . . . 10  |-  ( ( ( ( ( TopOpen ` fld )t  RR )  e.  Top  /\  ( A [,] B )  C_  RR )  /\  (
( A (,) B
)  e.  ( (
TopOpen ` fld )t  RR )  /\  ( A (,) B )  C_  ( A [,] B ) ) )  ->  ( A (,) B )  C_  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  ( A [,] B ) ) )
4130, 31, 34, 36, 40syl22anc 1224 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  (
( int `  (
( TopOpen ` fld )t  RR ) ) `  ( A [,] B ) ) )
42 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  ( A (,) B ) )
4341, 42sseldd 3498 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  ( A [,] B ) ) )
4418ffvelrnda 6012 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  CC )
45 cnxmet 21008 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
4613, 5sstri 3506 . . . . . . . . . . . . . 14  |-  ( A (,) B )  C_  CC
47 xmetres2 20592 . . . . . . . . . . . . . 14  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( A (,) B ) 
C_  CC )  -> 
( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) )  e.  ( *Met `  ( A (,) B
) ) )
4845, 46, 47mp2an 672 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) )  e.  ( *Met `  ( A (,) B ) )
4948a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  (
( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) )  e.  ( *Met `  ( A (,) B ) ) )
5045a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
51 ssid 3516 . . . . . . . . . . . . . . . . 17  |-  CC  C_  CC
52 eqid 2460 . . . . . . . . . . . . . . . . . 18  |-  ( (
TopOpen ` fld )t  ( A (,) B
) )  =  ( ( TopOpen ` fld )t  ( A (,) B ) )
5322cnfldtop 21019 . . . . . . . . . . . . . . . . . . . 20  |-  ( TopOpen ` fld )  e.  Top
5422cnfldtopon 21018 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
5554toponunii 19193 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  =  U. ( TopOpen ` fld )
5655restid 14678 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
5753, 56ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
5857eqcomi 2473 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
5922, 52, 58cncfcn 21141 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A (,) B
)  C_  CC  /\  CC  C_  CC )  ->  (
( A (,) B
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
6046, 51, 59mp2an 672 . . . . . . . . . . . . . . . 16  |-  ( ( A (,) B )
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) )
6116, 60syl6eleq 2558 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
62 resttopon 19421 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( A (,) B )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( A (,) B
) )  e.  (TopOn `  ( A (,) B
) ) )
6354, 46, 62mp2an 672 . . . . . . . . . . . . . . . . . 18  |-  ( (
TopOpen ` fld )t  ( A (,) B
) )  e.  (TopOn `  ( A (,) B
) )
6463toponunii 19193 . . . . . . . . . . . . . . . . 17  |-  ( A (,) B )  = 
U. ( ( TopOpen ` fld )t  ( A (,) B ) )
6564eleq2i 2538 . . . . . . . . . . . . . . . 16  |-  ( c  e.  ( A (,) B )  <->  c  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )
6665biimpi 194 . . . . . . . . . . . . . . 15  |-  ( c  e.  ( A (,) B )  ->  c  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )
67 eqid 2460 . . . . . . . . . . . . . . . 16  |-  U. (
( TopOpen ` fld )t  ( A (,) B ) )  = 
U. ( ( TopOpen ` fld )t  ( A (,) B ) )
6867cncnpi 19538 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) )  /\  c  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  c
) )
6961, 66, 68syl2an 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  c
) )
70 eqid 2460 . . . . . . . . . . . . . . . . . 18  |-  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) )  =  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) )
7122cnfldtopn 21017 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
72 eqid 2460 . . . . . . . . . . . . . . . . . 18  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )
7370, 71, 72metrest 20755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( A (,) B ) 
C_  CC )  -> 
( ( TopOpen ` fld )t  ( A (,) B ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) ) )
7445, 46, 73mp2an 672 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )t  ( A (,) B
) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  (
( A (,) B
)  X.  ( A (,) B ) ) ) )
7574oveq1i 6285 . . . . . . . . . . . . . . 15  |-  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  CnP  ( TopOpen ` fld ) )  =  ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )  CnP  ( TopOpen
` fld
) )
7675fveq1i 5858 . . . . . . . . . . . . . 14  |-  ( ( ( ( TopOpen ` fld )t  ( A (,) B ) )  CnP  ( TopOpen ` fld ) ) `  c
)  =  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )  CnP  ( TopOpen
` fld
) ) `  c
)
7769, 76syl6eleq 2558 . . . . . . . . . . . . 13  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )  CnP  ( TopOpen ` fld )
) `  c )
)
7877adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) )  CnP  ( TopOpen ` fld )
) `  c )
)
79 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  w  e.  RR+ )
8072, 71metcnpi2 20776 . . . . . . . . . . . 12  |-  ( ( ( ( ( abs 
o.  -  )  |`  (
( A (,) B
)  X.  ( A (,) B ) ) )  e.  ( *Met `  ( A (,) B ) )  /\  ( abs  o.  -  )  e.  ( *Met `  CC ) )  /\  ( F  e.  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  (
( A (,) B
)  X.  ( A (,) B ) ) ) )  CnP  ( TopOpen
` fld
) ) `  c
)  /\  w  e.  RR+ ) )  ->  E. v  e.  RR+  A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )
)
8149, 50, 78, 79, 80syl22anc 1224 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  E. v  e.  RR+  A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )
)
82 simpr 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  ->  u  e.  ( A (,) B ) )
83 simpllr 758 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
c  e.  ( A (,) B ) )
8482, 83ovresd 6418 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  =  ( u ( abs 
o.  -  ) c
) )
85 elioore 11548 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  e.  ( A (,) B )  ->  u  e.  RR )
8685recnd 9611 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  ( A (,) B )  ->  u  e.  CC )
8786adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  ->  u  e.  CC )
8846sseli 3493 . . . . . . . . . . . . . . . . . . . 20  |-  ( c  e.  ( A (,) B )  ->  c  e.  CC )
8988ad3antlr 730 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
c  e.  CC )
90 eqid 2460 . . . . . . . . . . . . . . . . . . . 20  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
9190cnmetdval 21006 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  CC  /\  c  e.  CC )  ->  ( u ( abs 
o.  -  ) c
)  =  ( abs `  ( u  -  c
) ) )
9287, 89, 91syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( u ( abs 
o.  -  ) c
)  =  ( abs `  ( u  -  c
) ) )
9384, 92eqtrd 2501 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  =  ( abs `  (
u  -  c ) ) )
9493breq1d 4450 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B
) ) ) c )  <  v  <->  ( abs `  ( u  -  c
) )  <  v
) )
9518ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  ->  F : ( A (,) B ) --> CC )
9695ffvelrnda 6012 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( F `  u
)  e.  CC )
9744ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( F `  c
)  e.  CC )
9890cnmetdval 21006 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F `  u
)  e.  CC  /\  ( F `  c )  e.  CC )  -> 
( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  =  ( abs `  ( ( F `  u )  -  ( F `  c )
) ) )
9996, 97, 98syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  =  ( abs `  ( ( F `  u )  -  ( F `  c )
) ) )
10099breq1d 4450 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( ( ( F `
 u ) ( abs  o.  -  )
( F `  c
) )  <  w  <->  ( abs `  ( ( F `  u )  -  ( F `  c ) ) )  <  w ) )
10194, 100imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  u  e.  ( A (,) B ) )  -> 
( ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )  <->  ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) ) )
102101ralbidva 2893 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  -> 
( A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )  <->  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) ) )
103 simprll 761 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  z  e.  ( ( A [,] B )  \  {
c } ) )
104 eldifsni 4146 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( ( A [,] B )  \  { c } )  ->  z  =/=  c
)
105103, 104syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  z  =/=  c )
10621ssdifssd 3635 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( A [,] B )  \  {
c } )  C_  RR )
107106sselda 3497 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  z  e.  ( ( A [,] B )  \  {
c } ) )  ->  z  e.  RR )
108107ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  (
z  e.  ( ( A [,] B ) 
\  { c } )  /\  A. u  e.  ( A (,) B
) ( ( abs `  ( u  -  c
) )  <  v  ->  ( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) ) )  ->  z  e.  RR )
109108ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  z  e.  RR )
110 elioore 11548 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( c  e.  ( A (,) B )  ->  c  e.  RR )
111110ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  c  e.  RR )
112109, 111lttri2d 9712 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  (
z  =/=  c  <->  ( z  <  c  \/  c  < 
z ) ) )
113112biimpa 484 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  =/=  c )  -> 
( z  <  c  \/  c  <  z ) )
114 fveq2 5857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( s  =  z  ->  ( G `  s )  =  ( G `  z ) )
115114oveq1d 6290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( s  =  z  ->  (
( G `  s
)  -  ( G `
 c ) )  =  ( ( G `
 z )  -  ( G `  c ) ) )
116 oveq1 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( s  =  z  ->  (
s  -  c )  =  ( z  -  c ) )
117115, 116oveq12d 6293 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( s  =  z  ->  (
( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) )  =  ( ( ( G `  z )  -  ( G `  c ) )  / 
( z  -  c
) ) )
118 eqid 2460 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) )  =  ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) )
119 ovex 6300 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( G `  z
)  -  ( G `
 c ) )  /  ( z  -  c ) )  e. 
_V
120117, 118, 119fvmpt 5941 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  e.  ( ( A [,] B )  \  { c } )  ->  ( ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) ) `  z )  =  ( ( ( G `  z )  -  ( G `  c ) )  / 
( z  -  c
) ) )
121120ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v )  ->  (
( s  e.  ( ( A [,] B
)  \  { c } )  |->  ( ( ( G `  s
)  -  ( G `
 c ) )  /  ( s  -  c ) ) ) `
 z )  =  ( ( ( G `
 z )  -  ( G `  c ) )  /  ( z  -  c ) ) )
122121ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  =  ( ( ( G `  z )  -  ( G `  c ) )  / 
( z  -  c
) ) )
12319ad4antr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  ->  G : ( A [,] B ) --> CC )
124 eldifi 3619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  e.  ( ( A [,] B )  \  { c } )  ->  z  e.  ( A [,] B ) )
125124ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v )  ->  z  e.  ( A [,] B
) )
126125ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
z  e.  ( A [,] B ) )
127123, 126ffvelrnd 6013 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( G `  z
)  e.  CC )
12835sseli 3493 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( c  e.  ( A (,) B )  ->  c  e.  ( A [,] B
) )
12919ffvelrnda 6012 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  ( G `  c )  e.  CC )
130128, 129sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( G `  c )  e.  CC )
131130ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( G `  c
)  e.  CC )
132109adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
z  e.  RR )
133132recnd 9611 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
z  e.  CC )
13488ad4antlr 732 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
c  e.  CC )
135 ltne 9670 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  RR  /\  z  <  c )  -> 
c  =/=  z )
136135necomd 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  RR  /\  z  <  c )  -> 
z  =/=  c )
137109, 136sylan 471 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
z  =/=  c )
138127, 131, 133, 134, 137div2subd 10359 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( ( ( G `
 z )  -  ( G `  c ) )  /  ( z  -  c ) )  =  ( ( ( G `  c )  -  ( G `  z ) )  / 
( c  -  z
) ) )
139122, 138eqtrd 2501 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  =  ( ( ( G `  c )  -  ( G `  z ) )  / 
( c  -  z
) ) )
140139oveq1d 6290 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( ( ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) )  =  ( ( ( ( G `  c )  -  ( G `  z ) )  / 
( c  -  z
) )  -  ( F `  c )
) )
141140fveq2d 5861 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  =  ( abs `  (
( ( ( G `
 c )  -  ( G `  z ) )  /  ( c  -  z ) )  -  ( F `  c ) ) ) )
1428ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  A  e.  RR )
1439ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  B  e.  RR )
14410ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  A  <_  B )
14516ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  F  e.  ( ( A (,) B ) -cn-> CC ) )
14615ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  F  e.  L^1 )
147 simpllr 758 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  c  e.  ( A (,) B
) )
148 simplrl 759 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  w  e.  RR+ )
149 simplrr 760 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  v  e.  RR+ )
150 simprlr 762 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  A. u  e.  ( A (,) B
) ( ( abs `  ( u  -  c
) )  <  v  ->  ( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )
151 oveq1 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( u  =  y  ->  (
u  -  c )  =  ( y  -  c ) )
152151fveq2d 5861 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( u  =  y  ->  ( abs `  ( u  -  c ) )  =  ( abs `  (
y  -  c ) ) )
153152breq1d 4450 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  y  ->  (
( abs `  (
u  -  c ) )  <  v  <->  ( abs `  ( y  -  c
) )  <  v
) )
154 fveq2 5857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( u  =  y  ->  ( F `  u )  =  ( F `  y ) )
155154oveq1d 6290 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( u  =  y  ->  (
( F `  u
)  -  ( F `
 c ) )  =  ( ( F `
 y )  -  ( F `  c ) ) )
156155fveq2d 5861 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( u  =  y  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  c ) ) ) )
157156breq1d 4450 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  y  ->  (
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w  <->  ( abs `  ( ( F `  y )  -  ( F `  c )
) )  <  w
) )
158153, 157imbi12d 320 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( u  =  y  ->  (
( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w )  <-> 
( ( abs `  (
y  -  c ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 c ) ) )  <  w ) ) )
159158rspccva 3206 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w )  /\  y  e.  ( A (,) B ) )  ->  ( ( abs `  ( y  -  c ) )  < 
v  ->  ( abs `  ( ( F `  y )  -  ( F `  c )
) )  <  w
) )
160150, 159sylan 471 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  y  e.  ( A (,) B ) )  -> 
( ( abs `  (
y  -  c ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 c ) ) )  <  w ) )
161103, 124syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  z  e.  ( A [,] B
) )
162 simprr 756 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  ( abs `  ( z  -  c ) )  < 
v )
163128ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  c  e.  ( A [,] B
) )
164110recnd 9611 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( c  e.  ( A (,) B )  ->  c  e.  CC )
165164subidd 9907 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( c  e.  ( A (,) B )  ->  (
c  -  c )  =  0 )
166165abs00bd 13074 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( c  e.  ( A (,) B )  ->  ( abs `  ( c  -  c ) )  =  0 )
167166ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  ( abs `  ( c  -  c ) )  =  0 )
168149rpgt0d 11248 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  0  <  v )
169167, 168eqbrtrd 4460 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  ( abs `  ( c  -  c ) )  < 
v )
1707, 142, 143, 144, 145, 146, 147, 118, 148, 149, 160, 161, 162, 163, 169ftc1cnnclem 29652 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( abs `  (
( ( ( G `
 c )  -  ( G `  z ) )  /  ( c  -  z ) )  -  ( F `  c ) ) )  <  w )
171141, 170eqbrtrd 4460 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  <  c )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w )
172120oveq1d 6290 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  ( ( A [,] B )  \  { c } )  ->  ( ( ( s  e.  ( ( A [,] B ) 
\  { c } )  |->  ( ( ( G `  s )  -  ( G `  c ) )  / 
( s  -  c
) ) ) `  z )  -  ( F `  c )
)  =  ( ( ( ( G `  z )  -  ( G `  c )
)  /  ( z  -  c ) )  -  ( F `  c ) ) )
173172fveq2d 5861 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  e.  ( ( A [,] B )  \  { c } )  ->  ( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  =  ( abs `  (
( ( ( G `
 z )  -  ( G `  c ) )  /  ( z  -  c ) )  -  ( F `  c ) ) ) )
174173ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v )  ->  ( abs `  ( ( ( s  e.  ( ( A [,] B ) 
\  { c } )  |->  ( ( ( G `  s )  -  ( G `  c ) )  / 
( s  -  c
) ) ) `  z )  -  ( F `  c )
) )  =  ( abs `  ( ( ( ( G `  z )  -  ( G `  c )
)  /  ( z  -  c ) )  -  ( F `  c ) ) ) )
175174ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  c  <  z )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  =  ( abs `  (
( ( ( G `
 z )  -  ( G `  c ) )  /  ( z  -  c ) )  -  ( F `  c ) ) ) )
1767, 142, 143, 144, 145, 146, 147, 118, 148, 149, 160, 163, 169, 161, 162ftc1cnnclem 29652 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  c  <  z )  -> 
( abs `  (
( ( ( G `
 z )  -  ( G `  c ) )  /  ( z  -  c ) )  -  ( F `  c ) ) )  <  w )
177175, 176eqbrtrd 4460 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  c  <  z )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w )
178171, 177jaodan 783 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  ( z  <  c  \/  c  <  z ) )  ->  ( abs `  ( ( ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w )
179113, 178syldan 470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  (
( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) )  /\  ( abs `  ( z  -  c ) )  < 
v ) )  /\  z  =/=  c )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w )
180105, 179mpdan 668 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( z  e.  ( ( A [,] B )  \  {
c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  (
u  -  c ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w ) )  /\  ( abs `  ( z  -  c
) )  <  v
) )  ->  ( abs `  ( ( ( s  e.  ( ( A [,] B ) 
\  { c } )  |->  ( ( ( G `  s )  -  ( G `  c ) )  / 
( s  -  c
) ) ) `  z )  -  ( F `  c )
) )  <  w
)
181180expr 615 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) ) )  -> 
( ( abs `  (
z  -  c ) )  <  v  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) )
182181adantld 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( z  e.  ( ( A [,] B
)  \  { c } )  /\  A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
) ) )  -> 
( ( z  =/=  c  /\  ( abs `  ( z  -  c
) )  <  v
)  ->  ( abs `  ( ( ( s  e.  ( ( A [,] B )  \  { c } ) 
|->  ( ( ( G `
 s )  -  ( G `  c ) )  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) )
183182expr 615 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  z  e.  ( ( A [,] B )  \  { c } ) )  ->  ( A. u  e.  ( A (,) B ) ( ( abs `  ( u  -  c ) )  <  v  ->  ( abs `  ( ( F `
 u )  -  ( F `  c ) ) )  <  w
)  ->  ( (
z  =/=  c  /\  ( abs `  ( z  -  c ) )  <  v )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) ) )
184183ralrimdva 2875 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  -> 
( A. u  e.  ( A (,) B
) ( ( abs `  ( u  -  c
) )  <  v  ->  ( abs `  (
( F `  u
)  -  ( F `
 c ) ) )  <  w )  ->  A. z  e.  ( ( A [,] B
)  \  { c } ) ( ( z  =/=  c  /\  ( abs `  ( z  -  c ) )  <  v )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) ) )
185102, 184sylbid 215 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  -> 
( A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )  ->  A. z  e.  ( ( A [,] B
)  \  { c } ) ( ( z  =/=  c  /\  ( abs `  ( z  -  c ) )  <  v )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) ) )
186185anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  w  e.  RR+ )  /\  v  e.  RR+ )  -> 
( A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )  ->  A. z  e.  ( ( A [,] B
)  \  { c } ) ( ( z  =/=  c  /\  ( abs `  ( z  -  c ) )  <  v )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) ) )
187186reximdva 2931 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  ( E. v  e.  RR+  A. u  e.  ( A (,) B
) ( ( u ( ( abs  o.  -  )  |`  ( ( A (,) B )  X.  ( A (,) B ) ) ) c )  <  v  ->  ( ( F `  u ) ( abs 
o.  -  ) ( F `  c )
)  <  w )  ->  E. v  e.  RR+  A. z  e.  ( ( A [,] B ) 
\  { c } ) ( ( z  =/=  c  /\  ( abs `  ( z  -  c ) )  < 
v )  ->  ( abs `  ( ( ( s  e.  ( ( A [,] B ) 
\  { c } )  |->  ( ( ( G `  s )  -  ( G `  c ) )  / 
( s  -  c
) ) ) `  z )  -  ( F `  c )
) )  <  w
) ) )
18881, 187mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  w  e.  RR+ )  ->  E. v  e.  RR+  A. z  e.  ( ( A [,] B )  \  {
c } ) ( ( z  =/=  c  /\  ( abs `  (
z  -  c ) )  <  v )  ->  ( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) )
189188ralrimiva 2871 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  A. w  e.  RR+  E. v  e.  RR+  A. z  e.  ( ( A [,] B
)  \  { c } ) ( ( z  =/=  c  /\  ( abs `  ( z  -  c ) )  <  v )  -> 
( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) )
19019adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  G :
( A [,] B
) --> CC )
19121, 5syl6ss 3509 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A [,] B
)  C_  CC )
192191adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( A [,] B )  C_  CC )
193128adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  ( A [,] B ) )
194190, 192, 193dvlem 22028 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  s  e.  ( ( A [,] B )  \  {
c } ) )  ->  ( ( ( G `  s )  -  ( G `  c ) )  / 
( s  -  c
) )  e.  CC )
195194, 118fmptd 6036 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) : ( ( A [,] B ) 
\  { c } ) --> CC )
196191ssdifssd 3635 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A [,] B )  \  {
c } )  C_  CC )
197196adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( A [,] B )  \  { c } ) 
C_  CC )
19888adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  CC )
199195, 197, 198ellimc3 22011 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( F `  c )  e.  ( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) lim CC  c )  <-> 
( ( F `  c )  e.  CC  /\ 
A. w  e.  RR+  E. v  e.  RR+  A. z  e.  ( ( A [,] B )  \  {
c } ) ( ( z  =/=  c  /\  ( abs `  (
z  -  c ) )  <  v )  ->  ( abs `  (
( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) `  z )  -  ( F `  c ) ) )  <  w ) ) ) )
20044, 189, 199mpbir2and 915 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  ( ( s  e.  ( ( A [,] B
)  \  { c } )  |->  ( ( ( G `  s
)  -  ( G `
 c ) )  /  ( s  -  c ) ) ) lim
CC  c ) )
201 eqid 2460 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  RR )  =  ( ( TopOpen ` fld )t  RR )
202201, 22, 118, 6, 19, 21eldv 22030 . . . . . . . . 9  |-  ( ph  ->  ( c ( RR 
_D  G ) ( F `  c )  <-> 
( c  e.  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  ( A [,] B ) )  /\  ( F `
 c )  e.  ( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) lim CC  c ) ) ) )
203202adantr 465 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( c
( RR  _D  G
) ( F `  c )  <->  ( c  e.  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  ( A [,] B ) )  /\  ( F `
 c )  e.  ( ( s  e.  ( ( A [,] B )  \  {
c } )  |->  ( ( ( G `  s )  -  ( G `  c )
)  /  ( s  -  c ) ) ) lim CC  c ) ) ) )
20443, 200, 203mpbir2and 915 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c ( RR  _D  G ) ( F `  c ) )
205 vex 3109 . . . . . . . 8  |-  c  e. 
_V
206 fvex 5867 . . . . . . . 8  |-  ( F `
 c )  e. 
_V
207205, 206breldm 5198 . . . . . . 7  |-  ( c ( RR  _D  G
) ( F `  c )  ->  c  e.  dom  ( RR  _D  G ) )
208204, 207syl 16 . . . . . 6  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  dom  ( RR  _D  G
) )
209208ex 434 . . . . 5  |-  ( ph  ->  ( c  e.  ( A (,) B )  ->  c  e.  dom  ( RR  _D  G
) ) )
210209ssrdv 3503 . . . 4  |-  ( ph  ->  ( A (,) B
)  C_  dom  ( RR 
_D  G ) )
21127, 210eqssd 3514 . . 3  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
212 df-fn 5582 . . 3  |-  ( ( RR  _D  G )  Fn  ( A (,) B )  <->  ( Fun  ( RR  _D  G
)  /\  dom  ( RR 
_D  G )  =  ( A (,) B
) ) )
2134, 211, 212sylanbrc 664 . 2  |-  ( ph  ->  ( RR  _D  G
)  Fn  ( A (,) B ) )
214 ffn 5722 . . 3  |-  ( F : ( A (,) B ) --> CC  ->  F  Fn  ( A (,) B ) )
21518, 214syl 16 . 2  |-  ( ph  ->  F  Fn  ( A (,) B ) )
2164adantr 465 . . 3  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  Fun  ( RR 
_D  G ) )
217 funbrfv 5897 . . 3  |-  ( Fun  ( RR  _D  G
)  ->  ( c
( RR  _D  G
) ( F `  c )  ->  (
( RR  _D  G
) `  c )  =  ( F `  c ) ) )
218216, 204, 217sylc 60 . 2  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  c )  =  ( F `  c ) )
219213, 215, 218eqfnfvd 5969 1  |-  ( ph  ->  ( RR  _D  G
)  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808    \ cdif 3466    C_ wss 3469   {csn 4020   U.cuni 4238   class class class wbr 4440    |-> cmpt 4498    X. cxp 4990   dom cdm 4992   ran crn 4993    |` cres 4994    o. ccom 4996   Fun wfun 5573    Fn wfn 5574   -->wf 5575   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481    < clt 9617    <_ cle 9618    - cmin 9794    / cdiv 10195   RR+crp 11209   (,)cioo 11518   [,]cicc 11521   abscabs 13017   ↾t crest 14665   TopOpenctopn 14666   topGenctg 14682   *Metcxmt 18167   MetOpencmopn 18172  ℂfldccnfld 18184   Topctop 19154  TopOnctopon 19155   intcnt 19277    Cn ccn 19484    CnP ccnp 19485   -cn->ccncf 21108   L^1cibl 21754   S.citg 21755   lim CC climc 21994    _D cdv 21995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-ofr 6516  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-omul 7125  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-acn 8312  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-rlim 13261  df-sum 13458  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lp 19396  df-perf 19397  df-cn 19487  df-cnp 19488  df-haus 19575  df-cmp 19646  df-tx 19791  df-hmeo 19984  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-xms 20551  df-ms 20552  df-tms 20553  df-cncf 21110  df-ovol 21604  df-vol 21605  df-mbf 21756  df-itg1 21757  df-itg2 21758  df-ibl 21759  df-itg 21760  df-0p 21805  df-limc 21998  df-dv 21999
This theorem is referenced by:  ftc2nc  29663
  Copyright terms: Public domain W3C validator