MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1cn Unicode version

Theorem ftc1cn 19880
Description: Strengthen the assumptions of ftc1 19879 to when the function  F is continuous on the entire interval  ( A ,  B ); in this case we can calculate  _D  G exactly. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1cn.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1cn.a  |-  ( ph  ->  A  e.  RR )
ftc1cn.b  |-  ( ph  ->  B  e.  RR )
ftc1cn.le  |-  ( ph  ->  A  <_  B )
ftc1cn.f  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
ftc1cn.i  |-  ( ph  ->  F  e.  L ^1 )
Assertion
Ref Expression
ftc1cn  |-  ( ph  ->  ( RR  _D  G
)  =  F )
Distinct variable groups:    x, t, A    t, B, x    t, F, x    ph, t, x
Allowed substitution hints:    G( x, t)

Proof of Theorem ftc1cn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dvf 19747 . . . . 5  |-  ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC
21a1i 11 . . . 4  |-  ( ph  ->  ( RR  _D  G
) : dom  ( RR  _D  G ) --> CC )
3 ffun 5552 . . . 4  |-  ( ( RR  _D  G ) : dom  ( RR 
_D  G ) --> CC 
->  Fun  ( RR  _D  G ) )
42, 3syl 16 . . 3  |-  ( ph  ->  Fun  ( RR  _D  G ) )
5 ax-resscn 9003 . . . . . . 7  |-  RR  C_  CC
65a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
7 ftc1cn.g . . . . . . 7  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
8 ftc1cn.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
9 ftc1cn.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
10 ftc1cn.le . . . . . . 7  |-  ( ph  ->  A  <_  B )
11 ssid 3327 . . . . . . . 8  |-  ( A (,) B )  C_  ( A (,) B )
1211a1i 11 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
13 ioossre 10928 . . . . . . . 8  |-  ( A (,) B )  C_  RR
1413a1i 11 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  RR )
15 ftc1cn.i . . . . . . 7  |-  ( ph  ->  F  e.  L ^1 )
16 ftc1cn.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
17 cncff 18876 . . . . . . . 8  |-  ( F  e.  ( ( A (,) B ) -cn-> CC )  ->  F :
( A (,) B
) --> CC )
1816, 17syl 16 . . . . . . 7  |-  ( ph  ->  F : ( A (,) B ) --> CC )
197, 8, 9, 10, 12, 14, 15, 18ftc1lem2 19873 . . . . . 6  |-  ( ph  ->  G : ( A [,] B ) --> CC )
20 iccssre 10948 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
218, 9, 20syl2anc 643 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
22 eqid 2404 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2322tgioo2 18787 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
246, 19, 21, 23, 22dvbssntr 19740 . . . . 5  |-  ( ph  ->  dom  ( RR  _D  G )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
25 iccntr 18805 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
268, 9, 25syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
2724, 26sseqtrd 3344 . . . 4  |-  ( ph  ->  dom  ( RR  _D  G )  C_  ( A (,) B ) )
288adantr 452 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  A  e.  RR )
299adantr 452 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  B  e.  RR )
3010adantr 452 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  A  <_  B )
3111a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  ( A (,) B ) )
3213a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  RR )
3315adantr 452 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  F  e.  L ^1 )
34 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  ( A (,) B ) )
3513, 5sstri 3317 . . . . . . . . . . . 12  |-  ( A (,) B )  C_  CC
36 ssid 3327 . . . . . . . . . . . 12  |-  CC  C_  CC
37 eqid 2404 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )t  ( A (,) B
) )  =  ( ( TopOpen ` fld )t  ( A (,) B ) )
3822cnfldtop 18771 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  Top
3922cnfldtopon 18770 . . . . . . . . . . . . . . . . 17  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
4039toponunii 16952 . . . . . . . . . . . . . . . 16  |-  CC  =  U. ( TopOpen ` fld )
4140restid 13616 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
4238, 41ax-mp 8 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
4342eqcomi 2408 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
4422, 37, 43cncfcn 18892 . . . . . . . . . . . 12  |-  ( ( ( A (,) B
)  C_  CC  /\  CC  C_  CC )  ->  (
( A (,) B
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
4535, 36, 44mp2an 654 . . . . . . . . . . 11  |-  ( ( A (,) B )
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) )
4616, 45syl6eleq 2494 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
4746adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
4835a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A (,) B
)  C_  CC )
49 resttopon 17179 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( A (,) B )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( A (,) B
) )  e.  (TopOn `  ( A (,) B
) ) )
5039, 48, 49sylancr 645 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( A (,) B ) )  e.  (TopOn `  ( A (,) B ) ) )
51 toponuni 16947 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  e.  (TopOn `  ( A (,) B ) )  -> 
( A (,) B
)  =  U. (
( TopOpen ` fld )t  ( A (,) B ) ) )
5250, 51syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  =  U. (
( TopOpen ` fld )t  ( A (,) B ) ) )
5352eleq2d 2471 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( A (,) B )  <-> 
y  e.  U. (
( TopOpen ` fld )t  ( A (,) B ) ) ) )
5453biimpa 471 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )
55 eqid 2404 . . . . . . . . . 10  |-  U. (
( TopOpen ` fld )t  ( A (,) B ) )  = 
U. ( ( TopOpen ` fld )t  ( A (,) B ) )
5655cncnpi 17296 . . . . . . . . 9  |-  ( ( F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) )  /\  y  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
5747, 54, 56syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
587, 28, 29, 30, 31, 32, 33, 34, 57, 23, 37, 22ftc1 19879 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y ( RR  _D  G ) ( F `  y ) )
59 vex 2919 . . . . . . . 8  |-  y  e. 
_V
60 fvex 5701 . . . . . . . 8  |-  ( F `
 y )  e. 
_V
6159, 60breldm 5033 . . . . . . 7  |-  ( y ( RR  _D  G
) ( F `  y )  ->  y  e.  dom  ( RR  _D  G ) )
6258, 61syl 16 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  dom  ( RR  _D  G
) )
6362ex 424 . . . . 5  |-  ( ph  ->  ( y  e.  ( A (,) B )  ->  y  e.  dom  ( RR  _D  G
) ) )
6463ssrdv 3314 . . . 4  |-  ( ph  ->  ( A (,) B
)  C_  dom  ( RR 
_D  G ) )
6527, 64eqssd 3325 . . 3  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
66 df-fn 5416 . . 3  |-  ( ( RR  _D  G )  Fn  ( A (,) B )  <->  ( Fun  ( RR  _D  G
)  /\  dom  ( RR 
_D  G )  =  ( A (,) B
) ) )
674, 65, 66sylanbrc 646 . 2  |-  ( ph  ->  ( RR  _D  G
)  Fn  ( A (,) B ) )
68 ffn 5550 . . 3  |-  ( F : ( A (,) B ) --> CC  ->  F  Fn  ( A (,) B ) )
6918, 68syl 16 . 2  |-  ( ph  ->  F  Fn  ( A (,) B ) )
704adantr 452 . . 3  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  Fun  ( RR 
_D  G ) )
71 funbrfv 5724 . . 3  |-  ( Fun  ( RR  _D  G
)  ->  ( y
( RR  _D  G
) ( F `  y )  ->  (
( RR  _D  G
) `  y )  =  ( F `  y ) ) )
7270, 58, 71sylc 58 . 2  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  y )  =  ( F `  y ) )
7367, 69, 72eqfnfvd 5789 1  |-  ( ph  ->  ( RR  _D  G
)  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    C_ wss 3280   U.cuni 3975   class class class wbr 4172    e. cmpt 4226   dom cdm 4837   ran crn 4838   Fun wfun 5407    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945    <_ cle 9077   (,)cioo 10872   [,]cicc 10875   ↾t crest 13603   TopOpenctopn 13604   topGenctg 13620  ℂfldccnfld 16658   Topctop 16913  TopOnctopon 16914   intcnt 17036    Cn ccn 17242    CnP ccnp 17243   -cn->ccncf 18859   L ^1cibl 19462   S.citg 19463    _D cdv 19703
This theorem is referenced by:  ftc2  19881  itgsubstlem  19885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-ovol 19314  df-vol 19315  df-mbf 19465  df-itg1 19466  df-itg2 19467  df-ibl 19468  df-itg 19469  df-0p 19515  df-limc 19706  df-dv 19707
  Copyright terms: Public domain W3C validator