Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem1 Structured version   Unicode version

Theorem ftc1anclem1 30330
Description: Lemma for ftc1anc 30338- the absolute value of a real-valued measurable function is measurable. Would be trivial with cncombf 22231, but this proof avoids ax-cc 8806. (Contributed by Brendan Leahy, 18-Jun-2018.)
Assertion
Ref Expression
ftc1anclem1  |-  ( ( F : A --> RR  /\  F  e. MblFn )  ->  ( abs  o.  F )  e. MblFn )

Proof of Theorem ftc1anclem1
Dummy variables  x  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6005 . . . . 5  |-  ( ( F : A --> RR  /\  t  e.  A )  ->  ( F `  t
)  e.  RR )
21recnd 9611 . . . 4  |-  ( ( F : A --> RR  /\  t  e.  A )  ->  ( F `  t
)  e.  CC )
3 id 22 . . . . 5  |-  ( F : A --> RR  ->  F : A --> RR )
43feqmptd 5901 . . . 4  |-  ( F : A --> RR  ->  F  =  ( t  e.  A  |->  ( F `  t ) ) )
5 absf 13252 . . . . . 6  |-  abs : CC
--> RR
65a1i 11 . . . . 5  |-  ( F : A --> RR  ->  abs
: CC --> RR )
76feqmptd 5901 . . . 4  |-  ( F : A --> RR  ->  abs  =  ( x  e.  CC  |->  ( abs `  x
) ) )
8 fveq2 5848 . . . 4  |-  ( x  =  ( F `  t )  ->  ( abs `  x )  =  ( abs `  ( F `  t )
) )
92, 4, 7, 8fmptco 6040 . . 3  |-  ( F : A --> RR  ->  ( abs  o.  F )  =  ( t  e.  A  |->  ( abs `  ( F `  t )
) ) )
109adantr 463 . 2  |-  ( ( F : A --> RR  /\  F  e. MblFn )  ->  ( abs  o.  F )  =  ( t  e.  A  |->  ( abs `  ( F `  t )
) ) )
112abscld 13349 . . . . 5  |-  ( ( F : A --> RR  /\  t  e.  A )  ->  ( abs `  ( F `  t )
)  e.  RR )
12 eqid 2454 . . . . 5  |-  ( t  e.  A  |->  ( abs `  ( F `  t
) ) )  =  ( t  e.  A  |->  ( abs `  ( F `  t )
) )
1311, 12fmptd 6031 . . . 4  |-  ( F : A --> RR  ->  ( t  e.  A  |->  ( abs `  ( F `
 t ) ) ) : A --> RR )
1413adantr 463 . . 3  |-  ( ( F : A --> RR  /\  F  e. MblFn )  ->  ( t  e.  A  |->  ( abs `  ( F `
 t ) ) ) : A --> RR )
15 fdm 5717 . . . . 5  |-  ( F : A --> RR  ->  dom 
F  =  A )
1615adantr 463 . . . 4  |-  ( ( F : A --> RR  /\  F  e. MblFn )  ->  dom 
F  =  A )
17 mbfdm 22201 . . . . 5  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
1817adantl 464 . . . 4  |-  ( ( F : A --> RR  /\  F  e. MblFn )  ->  dom 
F  e.  dom  vol )
1916, 18eqeltrrd 2543 . . 3  |-  ( ( F : A --> RR  /\  F  e. MblFn )  ->  A  e.  dom  vol )
20 rexr 9628 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  x  e.  RR* )
21 elioopnf 11621 . . . . . . . . . . . . 13  |-  ( x  e.  RR*  ->  ( ( abs `  ( F `
 t ) )  e.  ( x (,) +oo )  <->  ( ( abs `  ( F `  t
) )  e.  RR  /\  x  <  ( abs `  ( F `  t
) ) ) ) )
2220, 21syl 16 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
( abs `  ( F `  t )
)  e.  ( x (,) +oo )  <->  ( ( abs `  ( F `  t ) )  e.  RR  /\  x  < 
( abs `  ( F `  t )
) ) ) )
2311biantrurd 506 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  t  e.  A )  ->  ( x  <  ( abs `  ( F `  t ) )  <->  ( ( abs `  ( F `  t ) )  e.  RR  /\  x  < 
( abs `  ( F `  t )
) ) ) )
2423bicomd 201 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  t  e.  A )  ->  ( ( ( abs `  ( F `  t
) )  e.  RR  /\  x  <  ( abs `  ( F `  t
) ) )  <->  x  <  ( abs `  ( F `
 t ) ) ) )
2522, 24sylan9bbr 698 . . . . . . . . . . 11  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( abs `  ( F `
 t ) )  e.  ( x (,) +oo )  <->  x  <  ( abs `  ( F `  t
) ) ) )
26 ltnle 9653 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  ( abs `  ( F `
 t ) )  e.  RR )  -> 
( x  <  ( abs `  ( F `  t ) )  <->  -.  ( abs `  ( F `  t ) )  <_  x ) )
2726ancoms 451 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( F `  t )
)  e.  RR  /\  x  e.  RR )  ->  ( x  <  ( abs `  ( F `  t ) )  <->  -.  ( abs `  ( F `  t ) )  <_  x ) )
2811, 27sylan 469 . . . . . . . . . . 11  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( x  <  ( abs `  ( F `  t )
)  <->  -.  ( abs `  ( F `  t
) )  <_  x
) )
29 absle 13230 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  t
)  e.  RR  /\  x  e.  RR )  ->  ( ( abs `  ( F `  t )
)  <_  x  <->  ( -u x  <_  ( F `  t
)  /\  ( F `  t )  <_  x
) ) )
301, 29sylan 469 . . . . . . . . . . . . . 14  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( abs `  ( F `
 t ) )  <_  x  <->  ( -u x  <_  ( F `  t
)  /\  ( F `  t )  <_  x
) ) )
31 renegcl 9873 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  -u x  e.  RR )
32 lenlt 9652 . . . . . . . . . . . . . . . . 17  |-  ( (
-u x  e.  RR  /\  ( F `  t
)  e.  RR )  ->  ( -u x  <_  ( F `  t
)  <->  -.  ( F `  t )  <  -u x
) )
3331, 1, 32syl2anr 476 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( -u x  <_  ( F `  t )  <->  -.  ( F `  t )  <  -u x ) )
341biantrurd 506 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : A --> RR  /\  t  e.  A )  ->  ( ( F `  t )  <  -u x  <->  ( ( F `  t
)  e.  RR  /\  ( F `  t )  <  -u x ) ) )
3531rexrd 9632 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  ->  -u x  e.  RR* )
36 elioomnf 11622 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u x  e.  RR*  ->  (
( F `  t
)  e.  ( -oo (,) -u x )  <->  ( ( F `  t )  e.  RR  /\  ( F `
 t )  <  -u x ) ) )
3735, 36syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( F `  t
)  e.  ( -oo (,) -u x )  <->  ( ( F `  t )  e.  RR  /\  ( F `
 t )  <  -u x ) ) )
3837bicomd 201 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
( ( F `  t )  e.  RR  /\  ( F `  t
)  <  -u x )  <-> 
( F `  t
)  e.  ( -oo (,) -u x ) ) )
3934, 38sylan9bb 697 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( F `  t )  <  -u x  <->  ( F `  t )  e.  ( -oo (,) -u x
) ) )
4039notbid 292 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( -.  ( F `  t
)  <  -u x  <->  -.  ( F `  t )  e.  ( -oo (,) -u x
) ) )
4133, 40bitrd 253 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( -u x  <_  ( F `  t )  <->  -.  ( F `  t )  e.  ( -oo (,) -u x
) ) )
42 lenlt 9652 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  t
)  e.  RR  /\  x  e.  RR )  ->  ( ( F `  t )  <_  x  <->  -.  x  <  ( F `
 t ) ) )
431, 42sylan 469 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( F `  t )  <_  x  <->  -.  x  <  ( F `  t
) ) )
441biantrurd 506 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : A --> RR  /\  t  e.  A )  ->  ( x  <  ( F `  t )  <->  ( ( F `  t
)  e.  RR  /\  x  <  ( F `  t ) ) ) )
45 elioopnf 11621 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR*  ->  ( ( F `  t )  e.  ( x (,) +oo )  <->  ( ( F `
 t )  e.  RR  /\  x  < 
( F `  t
) ) ) )
4620, 45syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( F `  t
)  e.  ( x (,) +oo )  <->  ( ( F `  t )  e.  RR  /\  x  < 
( F `  t
) ) ) )
4746bicomd 201 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
( ( F `  t )  e.  RR  /\  x  <  ( F `
 t ) )  <-> 
( F `  t
)  e.  ( x (,) +oo ) ) )
4844, 47sylan9bb 697 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( x  <  ( F `  t )  <->  ( F `  t )  e.  ( x (,) +oo )
) )
4948notbid 292 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( -.  x  <  ( F `
 t )  <->  -.  ( F `  t )  e.  ( x (,) +oo ) ) )
5043, 49bitrd 253 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( F `  t )  <_  x  <->  -.  ( F `  t )  e.  ( x (,) +oo ) ) )
5141, 50anbi12d 708 . . . . . . . . . . . . . 14  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( (
-u x  <_  ( F `  t )  /\  ( F `  t
)  <_  x )  <->  ( -.  ( F `  t )  e.  ( -oo (,) -u x
)  /\  -.  ( F `  t )  e.  ( x (,) +oo ) ) ) )
5230, 51bitrd 253 . . . . . . . . . . . . 13  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( abs `  ( F `
 t ) )  <_  x  <->  ( -.  ( F `  t )  e.  ( -oo (,) -u x )  /\  -.  ( F `  t )  e.  ( x (,) +oo ) ) ) )
5352notbid 292 . . . . . . . . . . . 12  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( -.  ( abs `  ( F `  t )
)  <_  x  <->  -.  ( -.  ( F `  t
)  e.  ( -oo (,) -u x )  /\  -.  ( F `  t
)  e.  ( x (,) +oo ) ) ) )
54 elun 3631 . . . . . . . . . . . . 13  |-  ( ( F `  t )  e.  ( ( -oo (,) -u x )  u.  ( x (,) +oo ) )  <->  ( ( F `  t )  e.  ( -oo (,) -u x
)  \/  ( F `
 t )  e.  ( x (,) +oo ) ) )
55 oran 494 . . . . . . . . . . . . 13  |-  ( ( ( F `  t
)  e.  ( -oo (,) -u x )  \/  ( F `  t
)  e.  ( x (,) +oo ) )  <->  -.  ( -.  ( F `
 t )  e.  ( -oo (,) -u x
)  /\  -.  ( F `  t )  e.  ( x (,) +oo ) ) )
5654, 55bitri 249 . . . . . . . . . . . 12  |-  ( ( F `  t )  e.  ( ( -oo (,) -u x )  u.  ( x (,) +oo ) )  <->  -.  ( -.  ( F `  t
)  e.  ( -oo (,) -u x )  /\  -.  ( F `  t
)  e.  ( x (,) +oo ) ) )
5753, 56syl6bbr 263 . . . . . . . . . . 11  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( -.  ( abs `  ( F `  t )
)  <_  x  <->  ( F `  t )  e.  ( ( -oo (,) -u x
)  u.  ( x (,) +oo ) ) ) )
5825, 28, 573bitrd 279 . . . . . . . . . 10  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( abs `  ( F `
 t ) )  e.  ( x (,) +oo )  <->  ( F `  t )  e.  ( ( -oo (,) -u x
)  u.  ( x (,) +oo ) ) ) )
5958an32s 802 . . . . . . . . 9  |-  ( ( ( F : A --> RR  /\  x  e.  RR )  /\  t  e.  A
)  ->  ( ( abs `  ( F `  t ) )  e.  ( x (,) +oo ) 
<->  ( F `  t
)  e.  ( ( -oo (,) -u x
)  u.  ( x (,) +oo ) ) ) )
6059rabbidva 3097 . . . . . . . 8  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  { t  e.  A  |  ( abs `  ( F `  t )
)  e.  ( x (,) +oo ) }  =  { t  e.  A  |  ( F `
 t )  e.  ( ( -oo (,) -u x )  u.  (
x (,) +oo )
) } )
6112mptpreima 5483 . . . . . . . 8  |-  ( `' ( t  e.  A  |->  ( abs `  ( F `  t )
) ) " (
x (,) +oo )
)  =  { t  e.  A  |  ( abs `  ( F `
 t ) )  e.  ( x (,) +oo ) }
62 eqid 2454 . . . . . . . . 9  |-  ( t  e.  A  |->  ( F `
 t ) )  =  ( t  e.  A  |->  ( F `  t ) )
6362mptpreima 5483 . . . . . . . 8  |-  ( `' ( t  e.  A  |->  ( F `  t
) ) " (
( -oo (,) -u x
)  u.  ( x (,) +oo ) ) )  =  { t  e.  A  |  ( F `  t )  e.  ( ( -oo (,) -u x )  u.  ( x (,) +oo ) ) }
6460, 61, 633eqtr4g 2520 . . . . . . 7  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  ( `' ( t  e.  A  |->  ( abs `  ( F `  t
) ) ) "
( x (,) +oo ) )  =  ( `' ( t  e.  A  |->  ( F `  t ) ) "
( ( -oo (,) -u x )  u.  (
x (,) +oo )
) ) )
65 simpl 455 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  F : A --> RR )
6665feqmptd 5901 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  F  =  ( t  e.  A  |->  ( F `
 t ) ) )
6766cnveqd 5167 . . . . . . . 8  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  `' F  =  `' ( t  e.  A  |->  ( F `  t
) ) )
6867imaeq1d 5324 . . . . . . 7  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  ( `' F "
( ( -oo (,) -u x )  u.  (
x (,) +oo )
) )  =  ( `' ( t  e.  A  |->  ( F `  t ) ) "
( ( -oo (,) -u x )  u.  (
x (,) +oo )
) ) )
6964, 68eqtr4d 2498 . . . . . 6  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  ( `' ( t  e.  A  |->  ( abs `  ( F `  t
) ) ) "
( x (,) +oo ) )  =  ( `' F " ( ( -oo (,) -u x
)  u.  ( x (,) +oo ) ) ) )
70 imaundi 5403 . . . . . 6  |-  ( `' F " ( ( -oo (,) -u x
)  u.  ( x (,) +oo ) ) )  =  ( ( `' F " ( -oo (,) -u x ) )  u.  ( `' F " ( x (,) +oo ) ) )
7169, 70syl6eq 2511 . . . . 5  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  ( `' ( t  e.  A  |->  ( abs `  ( F `  t
) ) ) "
( x (,) +oo ) )  =  ( ( `' F "
( -oo (,) -u x
) )  u.  ( `' F " ( x (,) +oo ) ) ) )
7271adantlr 712 . . . 4  |-  ( ( ( F : A --> RR  /\  F  e. MblFn )  /\  x  e.  RR )  ->  ( `' ( t  e.  A  |->  ( abs `  ( F `
 t ) ) ) " ( x (,) +oo ) )  =  ( ( `' F " ( -oo (,) -u x ) )  u.  ( `' F " ( x (,) +oo ) ) ) )
73 mbfima 22205 . . . . . . 7  |-  ( ( F  e. MblFn  /\  F : A
--> RR )  ->  ( `' F " ( -oo (,) -u x ) )  e.  dom  vol )
74 mbfima 22205 . . . . . . 7  |-  ( ( F  e. MblFn  /\  F : A
--> RR )  ->  ( `' F " ( x (,) +oo ) )  e.  dom  vol )
75 unmbl 22114 . . . . . . 7  |-  ( ( ( `' F "
( -oo (,) -u x
) )  e.  dom  vol 
/\  ( `' F " ( x (,) +oo ) )  e.  dom  vol )  ->  ( ( `' F " ( -oo (,) -u x ) )  u.  ( `' F " ( x (,) +oo ) ) )  e. 
dom  vol )
7673, 74, 75syl2anc 659 . . . . . 6  |-  ( ( F  e. MblFn  /\  F : A
--> RR )  ->  (
( `' F "
( -oo (,) -u x
) )  u.  ( `' F " ( x (,) +oo ) ) )  e.  dom  vol )
7776ancoms 451 . . . . 5  |-  ( ( F : A --> RR  /\  F  e. MblFn )  ->  ( ( `' F "
( -oo (,) -u x
) )  u.  ( `' F " ( x (,) +oo ) ) )  e.  dom  vol )
7877adantr 463 . . . 4  |-  ( ( ( F : A --> RR  /\  F  e. MblFn )  /\  x  e.  RR )  ->  ( ( `' F " ( -oo (,) -u x ) )  u.  ( `' F " ( x (,) +oo ) ) )  e. 
dom  vol )
7972, 78eqeltrd 2542 . . 3  |-  ( ( ( F : A --> RR  /\  F  e. MblFn )  /\  x  e.  RR )  ->  ( `' ( t  e.  A  |->  ( abs `  ( F `
 t ) ) ) " ( x (,) +oo ) )  e.  dom  vol )
80 abslt 13229 . . . . . . . . . . 11  |-  ( ( ( F `  t
)  e.  RR  /\  x  e.  RR )  ->  ( ( abs `  ( F `  t )
)  <  x  <->  ( -u x  <  ( F `  t
)  /\  ( F `  t )  <  x
) ) )
811, 80sylan 469 . . . . . . . . . 10  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( abs `  ( F `
 t ) )  <  x  <->  ( -u x  <  ( F `  t
)  /\  ( F `  t )  <  x
) ) )
82 elioomnf 11622 . . . . . . . . . . . 12  |-  ( x  e.  RR*  ->  ( ( abs `  ( F `
 t ) )  e.  ( -oo (,) x )  <->  ( ( abs `  ( F `  t ) )  e.  RR  /\  ( abs `  ( F `  t
) )  <  x
) ) )
8320, 82syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
( abs `  ( F `  t )
)  e.  ( -oo (,) x )  <->  ( ( abs `  ( F `  t ) )  e.  RR  /\  ( abs `  ( F `  t
) )  <  x
) ) )
8411biantrurd 506 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  t  e.  A )  ->  ( ( abs `  ( F `  t )
)  <  x  <->  ( ( abs `  ( F `  t ) )  e.  RR  /\  ( abs `  ( F `  t
) )  <  x
) ) )
8584bicomd 201 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  t  e.  A )  ->  ( ( ( abs `  ( F `  t
) )  e.  RR  /\  ( abs `  ( F `  t )
)  <  x )  <->  ( abs `  ( F `
 t ) )  <  x ) )
8683, 85sylan9bbr 698 . . . . . . . . . 10  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( abs `  ( F `
 t ) )  e.  ( -oo (,) x )  <->  ( abs `  ( F `  t
) )  <  x
) )
8735, 20jca 530 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( -u x  e.  RR*  /\  x  e.  RR* ) )
881rexrd 9632 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  t  e.  A )  ->  ( F `  t
)  e.  RR* )
89 elioo5 11585 . . . . . . . . . . . 12  |-  ( (
-u x  e.  RR*  /\  x  e.  RR*  /\  ( F `  t )  e.  RR* )  ->  (
( F `  t
)  e.  ( -u x (,) x )  <->  ( -u x  <  ( F `  t
)  /\  ( F `  t )  <  x
) ) )
90893expa 1194 . . . . . . . . . . 11  |-  ( ( ( -u x  e. 
RR*  /\  x  e.  RR* )  /\  ( F `
 t )  e. 
RR* )  ->  (
( F `  t
)  e.  ( -u x (,) x )  <->  ( -u x  <  ( F `  t
)  /\  ( F `  t )  <  x
) ) )
9187, 88, 90syl2anr 476 . . . . . . . . . 10  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( F `  t )  e.  ( -u x (,) x )  <->  ( -u x  <  ( F `  t
)  /\  ( F `  t )  <  x
) ) )
9281, 86, 913bitr4d 285 . . . . . . . . 9  |-  ( ( ( F : A --> RR  /\  t  e.  A
)  /\  x  e.  RR )  ->  ( ( abs `  ( F `
 t ) )  e.  ( -oo (,) x )  <->  ( F `  t )  e.  (
-u x (,) x
) ) )
9392an32s 802 . . . . . . . 8  |-  ( ( ( F : A --> RR  /\  x  e.  RR )  /\  t  e.  A
)  ->  ( ( abs `  ( F `  t ) )  e.  ( -oo (,) x
)  <->  ( F `  t )  e.  (
-u x (,) x
) ) )
9493rabbidva 3097 . . . . . . 7  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  { t  e.  A  |  ( abs `  ( F `  t )
)  e.  ( -oo (,) x ) }  =  { t  e.  A  |  ( F `  t )  e.  (
-u x (,) x
) } )
9512mptpreima 5483 . . . . . . 7  |-  ( `' ( t  e.  A  |->  ( abs `  ( F `  t )
) ) " ( -oo (,) x ) )  =  { t  e.  A  |  ( abs `  ( F `  t
) )  e.  ( -oo (,) x ) }
9662mptpreima 5483 . . . . . . 7  |-  ( `' ( t  e.  A  |->  ( F `  t
) ) " ( -u x (,) x ) )  =  { t  e.  A  |  ( F `  t )  e.  ( -u x (,) x ) }
9794, 95, 963eqtr4g 2520 . . . . . 6  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  ( `' ( t  e.  A  |->  ( abs `  ( F `  t
) ) ) "
( -oo (,) x ) )  =  ( `' ( t  e.  A  |->  ( F `  t
) ) " ( -u x (,) x ) ) )
9867imaeq1d 5324 . . . . . 6  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  ( `' F "
( -u x (,) x
) )  =  ( `' ( t  e.  A  |->  ( F `  t ) ) "
( -u x (,) x
) ) )
9997, 98eqtr4d 2498 . . . . 5  |-  ( ( F : A --> RR  /\  x  e.  RR )  ->  ( `' ( t  e.  A  |->  ( abs `  ( F `  t
) ) ) "
( -oo (,) x ) )  =  ( `' F " ( -u x (,) x ) ) )
10099adantlr 712 . . . 4  |-  ( ( ( F : A --> RR  /\  F  e. MblFn )  /\  x  e.  RR )  ->  ( `' ( t  e.  A  |->  ( abs `  ( F `
 t ) ) ) " ( -oo (,) x ) )  =  ( `' F "
( -u x (,) x
) ) )
101 mbfima 22205 . . . . . 6  |-  ( ( F  e. MblFn  /\  F : A
--> RR )  ->  ( `' F " ( -u x (,) x ) )  e.  dom  vol )
102101ancoms 451 . . . . 5  |-  ( ( F : A --> RR  /\  F  e. MblFn )  ->  ( `' F " ( -u x (,) x ) )  e.  dom  vol )
103102adantr 463 . . . 4  |-  ( ( ( F : A --> RR  /\  F  e. MblFn )  /\  x  e.  RR )  ->  ( `' F " ( -u x (,) x ) )  e. 
dom  vol )
104100, 103eqeltrd 2542 . . 3  |-  ( ( ( F : A --> RR  /\  F  e. MblFn )  /\  x  e.  RR )  ->  ( `' ( t  e.  A  |->  ( abs `  ( F `
 t ) ) ) " ( -oo (,) x ) )  e. 
dom  vol )
10514, 19, 79, 104ismbf2d 22214 . 2  |-  ( ( F : A --> RR  /\  F  e. MblFn )  ->  ( t  e.  A  |->  ( abs `  ( F `
 t ) ) )  e. MblFn )
10610, 105eqeltrd 2542 1  |-  ( ( F : A --> RR  /\  F  e. MblFn )  ->  ( abs  o.  F )  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1398    e. wcel 1823   {crab 2808    u. cun 3459   class class class wbr 4439    |-> cmpt 4497   `'ccnv 4987   dom cdm 4988   "cima 4991    o. ccom 4992   -->wf 5566   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   +oocpnf 9614   -oocmnf 9615   RR*cxr 9616    < clt 9617    <_ cle 9618   -ucneg 9797   (,)cioo 11532   abscabs 13149   volcvol 22041  MblFncmbf 22189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xadd 11322  df-ioo 11536  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-xmet 18607  df-met 18608  df-ovol 22042  df-vol 22043  df-mbf 22194
This theorem is referenced by:  ftc1anclem2  30331  ftc1anclem4  30333  ftc1anclem5  30334  ftc1anclem6  30335  ftc1anclem8  30337
  Copyright terms: Public domain W3C validator