MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1a Structured version   Unicode version

Theorem ftc1a 21509
Description: The Fundamental Theorem of Calculus, part one. The function  G formed by varying the right endpoint of an integral of  F is continuous if  F is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L^1 )
ftc1a.f  |-  ( ph  ->  F : D --> CC )
Assertion
Ref Expression
ftc1a  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
Distinct variable groups:    x, t, D    t, A, x    t, B, x    ph, t, x   
t, F, x
Allowed substitution hints:    G( x, t)

Proof of Theorem ftc1a
Dummy variables  s  u  w  y  z 
r  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . 3  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
2 ftc1.a . . 3  |-  ( ph  ->  A  e.  RR )
3 ftc1.b . . 3  |-  ( ph  ->  B  e.  RR )
4 ftc1.le . . 3  |-  ( ph  ->  A  <_  B )
5 ftc1.s . . 3  |-  ( ph  ->  ( A (,) B
)  C_  D )
6 ftc1.d . . 3  |-  ( ph  ->  D  C_  RR )
7 ftc1.i . . 3  |-  ( ph  ->  F  e.  L^1 )
8 ftc1a.f . . 3  |-  ( ph  ->  F : D --> CC )
91, 2, 3, 4, 5, 6, 7, 8ftc1lem2 21508 . 2  |-  ( ph  ->  G : ( A [,] B ) --> CC )
10 fvex 5701 . . . . . . . 8  |-  ( F `
 w )  e. 
_V
1110a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  w  e.  D )  ->  ( F `  w )  e.  _V )
128feqmptd 5744 . . . . . . . . 9  |-  ( ph  ->  F  =  ( w  e.  D  |->  ( F `
 w ) ) )
1312, 7eqeltrrd 2518 . . . . . . . 8  |-  ( ph  ->  ( w  e.  D  |->  ( F `  w
) )  e.  L^1 )
1413adantr 465 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( w  e.  D  |->  ( F `
 w ) )  e.  L^1 )
15 simpr 461 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
1611, 14, 15itgcn 21320 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. u  e. 
dom  vol ( ( u 
C_  D  /\  ( vol `  u )  < 
d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )
17 oveq12 6100 . . . . . . . . . . . . . . 15  |-  ( ( s  =  z  /\  r  =  y )  ->  ( s  -  r
)  =  ( z  -  y ) )
1817fveq2d 5695 . . . . . . . . . . . . . 14  |-  ( ( s  =  z  /\  r  =  y )  ->  ( abs `  (
s  -  r ) )  =  ( abs `  ( z  -  y
) ) )
1918breq1d 4302 . . . . . . . . . . . . 13  |-  ( ( s  =  z  /\  r  =  y )  ->  ( ( abs `  (
s  -  r ) )  <  d  <->  ( abs `  ( z  -  y
) )  <  d
) )
20 fveq2 5691 . . . . . . . . . . . . . . . 16  |-  ( s  =  z  ->  ( G `  s )  =  ( G `  z ) )
21 fveq2 5691 . . . . . . . . . . . . . . . 16  |-  ( r  =  y  ->  ( G `  r )  =  ( G `  y ) )
2220, 21oveqan12d 6110 . . . . . . . . . . . . . . 15  |-  ( ( s  =  z  /\  r  =  y )  ->  ( ( G `  s )  -  ( G `  r )
)  =  ( ( G `  z )  -  ( G `  y ) ) )
2322fveq2d 5695 . . . . . . . . . . . . . 14  |-  ( ( s  =  z  /\  r  =  y )  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  =  ( abs `  ( ( G `  z )  -  ( G `  y )
) ) )
2423breq1d 4302 . . . . . . . . . . . . 13  |-  ( ( s  =  z  /\  r  =  y )  ->  ( ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e  <->  ( abs `  ( ( G `  z )  -  ( G `  y )
) )  <  e
) )
2519, 24imbi12d 320 . . . . . . . . . . . 12  |-  ( ( s  =  z  /\  r  =  y )  ->  ( ( ( abs `  ( s  -  r
) )  <  d  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) ) )
2625ancoms 453 . . . . . . . . . . 11  |-  ( ( r  =  y  /\  s  =  z )  ->  ( ( ( abs `  ( s  -  r
) )  <  d  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) ) )
27 oveq12 6100 . . . . . . . . . . . . . . 15  |-  ( ( s  =  y  /\  r  =  z )  ->  ( s  -  r
)  =  ( y  -  z ) )
2827fveq2d 5695 . . . . . . . . . . . . . 14  |-  ( ( s  =  y  /\  r  =  z )  ->  ( abs `  (
s  -  r ) )  =  ( abs `  ( y  -  z
) ) )
2928breq1d 4302 . . . . . . . . . . . . 13  |-  ( ( s  =  y  /\  r  =  z )  ->  ( ( abs `  (
s  -  r ) )  <  d  <->  ( abs `  ( y  -  z
) )  <  d
) )
30 fveq2 5691 . . . . . . . . . . . . . . . 16  |-  ( s  =  y  ->  ( G `  s )  =  ( G `  y ) )
31 fveq2 5691 . . . . . . . . . . . . . . . 16  |-  ( r  =  z  ->  ( G `  r )  =  ( G `  z ) )
3230, 31oveqan12d 6110 . . . . . . . . . . . . . . 15  |-  ( ( s  =  y  /\  r  =  z )  ->  ( ( G `  s )  -  ( G `  r )
)  =  ( ( G `  y )  -  ( G `  z ) ) )
3332fveq2d 5695 . . . . . . . . . . . . . 14  |-  ( ( s  =  y  /\  r  =  z )  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  =  ( abs `  ( ( G `  y )  -  ( G `  z )
) ) )
3433breq1d 4302 . . . . . . . . . . . . 13  |-  ( ( s  =  y  /\  r  =  z )  ->  ( ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e  <->  ( abs `  ( ( G `  y )  -  ( G `  z )
) )  <  e
) )
3529, 34imbi12d 320 . . . . . . . . . . . 12  |-  ( ( s  =  y  /\  r  =  z )  ->  ( ( ( abs `  ( s  -  r
) )  <  d  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  d  -> 
( abs `  (
( G `  y
)  -  ( G `
 z ) ) )  <  e ) ) )
3635ancoms 453 . . . . . . . . . . 11  |-  ( ( r  =  z  /\  s  =  y )  ->  ( ( ( abs `  ( s  -  r
) )  <  d  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  d  -> 
( abs `  (
( G `  y
)  -  ( G `
 z ) ) )  <  e ) ) )
37 iccssre 11377 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
382, 3, 37syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( A [,] B
)  C_  RR )
3938ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  d  e.  RR+ ) )  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e ) )  ->  ( A [,] B )  C_  RR )
4038ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  ( A [,] B )  C_  RR )
41 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  z  e.  ( A [,] B
) )
4240, 41sseldd 3357 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  z  e.  RR )
4342recnd 9412 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  z  e.  CC )
44 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  y  e.  ( A [,] B
) )
4540, 44sseldd 3357 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  y  e.  RR )
4645recnd 9412 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  y  e.  CC )
4743, 46abssubd 12939 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  ( abs `  ( z  -  y ) )  =  ( abs `  (
y  -  z ) ) )
4847breq1d 4302 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  (
( abs `  (
z  -  y ) )  <  d  <->  ( abs `  ( y  -  z
) )  <  d
) )
499ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  G : ( A [,] B ) --> CC )
5049, 41ffvelrnd 5844 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  ( G `  z )  e.  CC )
5149, 44ffvelrnd 5844 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  ( G `  y )  e.  CC )
5250, 51abssubd 12939 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  ( abs `  ( ( G `
 z )  -  ( G `  y ) ) )  =  ( abs `  ( ( G `  y )  -  ( G `  z ) ) ) )
5352breq1d 4302 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  (
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e  <->  ( abs `  ( ( G `  y )  -  ( G `  z )
) )  <  e
) )
5448, 53imbi12d 320 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  (
( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  d  -> 
( abs `  (
( G `  y
)  -  ( G `
 z ) ) )  <  e ) ) )
55 simpr3 996 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  y  <_  z )
562adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  A  e.  RR )
573adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  B  e.  RR )
584adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  A  <_  B )
595adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  ( A (,) B )  C_  D )
606adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  D  C_  RR )
617adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  F  e.  L^1 )
628adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  F : D --> CC )
63 simpr1 994 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  y  e.  ( A [,] B
) )
64 simpr2 995 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  z  e.  ( A [,] B
) )
651, 56, 57, 58, 59, 60, 61, 62, 63, 64ftc1lem1 21507 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
y  e.  ( A [,] B )  /\  z  e.  ( A [,] B )  /\  y  <_  z ) )  /\  y  <_  z )  -> 
( ( G `  z )  -  ( G `  y )
)  =  S. ( y (,) z ) ( F `  t
)  _d t )
6655, 65mpdan 668 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  (
( G `  z
)  -  ( G `
 y ) )  =  S. ( y (,) z ) ( F `  t )  _d t )
6766adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  d  e.  RR+ ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  (
( G `  z
)  -  ( G `
 y ) )  =  S. ( y (,) z ) ( F `  t )  _d t )
6867ad2ant2r 746 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
( G `  z
)  -  ( G `
 y ) )  =  S. ( y (,) z ) ( F `  t )  _d t )
6968fveq2d 5695 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  ( ( G `
 z )  -  ( G `  y ) ) )  =  ( abs `  S. ( y (,) z ) ( F `  t
)  _d t ) )
70 fvex 5701 . . . . . . . . . . . . . . . . 17  |-  ( F `
 t )  e. 
_V
7170a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  /\  t  e.  ( y (,) z
) )  ->  ( F `  t )  e.  _V )
722ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  A  e.  RR )
7372rexrd 9433 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  A  e.  RR* )
74 simprl1 1033 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  y  e.  ( A [,] B
) )
753ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  B  e.  RR )
76 elicc2 11360 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
7772, 75, 76syl2anc 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y  e.  ( A [,] B )  <->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
7874, 77mpbid 210 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y  e.  RR  /\  A  <_  y  /\  y  <_  B ) )
7978simp2d 1001 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  A  <_  y )
80 iooss1 11335 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR*  /\  A  <_  y )  ->  (
y (,) z ) 
C_  ( A (,) z ) )
8173, 79, 80syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y (,) z ) 
C_  ( A (,) z ) )
8275rexrd 9433 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  B  e.  RR* )
83 simprl2 1034 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  z  e.  ( A [,] B
) )
84 elicc2 11360 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( z  e.  ( A [,] B )  <-> 
( z  e.  RR  /\  A  <_  z  /\  z  <_  B ) ) )
8572, 75, 84syl2anc 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
z  e.  ( A [,] B )  <->  ( z  e.  RR  /\  A  <_ 
z  /\  z  <_  B ) ) )
8683, 85mpbid 210 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
z  e.  RR  /\  A  <_  z  /\  z  <_  B ) )
8786simp3d 1002 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  z  <_  B )
88 iooss2 11336 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  RR*  /\  z  <_  B )  ->  ( A (,) z )  C_  ( A (,) B ) )
8982, 87, 88syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( A (,) z )  C_  ( A (,) B ) )
9081, 89sstrd 3366 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y (,) z ) 
C_  ( A (,) B ) )
915ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( A (,) B )  C_  D )
9290, 91sstrd 3366 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y (,) z ) 
C_  D )
93 ioombl 21046 . . . . . . . . . . . . . . . . . 18  |-  ( y (,) z )  e. 
dom  vol
9493a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y (,) z )  e.  dom  vol )
9570a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  /\  t  e.  D )  ->  ( F `  t )  e.  _V )
968feqmptd 5744 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  =  ( t  e.  D  |->  ( F `
 t ) ) )
9796, 7eqeltrrd 2518 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( t  e.  D  |->  ( F `  t
) )  e.  L^1 )
9897ad3antrrr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
t  e.  D  |->  ( F `  t ) )  e.  L^1 )
9992, 94, 95, 98iblss 21282 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
t  e.  ( y (,) z )  |->  ( F `  t ) )  e.  L^1 )
10071, 99itgcl 21261 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  S. ( y (,) z
) ( F `  t )  _d t  e.  CC )
101100abscld 12922 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  S. ( y (,) z ) ( F `  t )  _d t )  e.  RR )
102 iblmbf 21245 . . . . . . . . . . . . . . . . . 18  |-  ( ( t  e.  ( y (,) z )  |->  ( F `  t ) )  e.  L^1 
->  ( t  e.  ( y (,) z ) 
|->  ( F `  t
) )  e. MblFn )
10399, 102syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
t  e.  ( y (,) z )  |->  ( F `  t ) )  e. MblFn )
104103, 71mbfmptcl 21115 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  /\  t  e.  ( y (,) z
) )  ->  ( F `  t )  e.  CC )
105104abscld 12922 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  /\  t  e.  ( y (,) z
) )  ->  ( abs `  ( F `  t ) )  e.  RR )
10671, 99iblabs 21306 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
t  e.  ( y (,) z )  |->  ( abs `  ( F `
 t ) ) )  e.  L^1 )
107105, 106itgrecl 21275 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  S. ( y (,) z
) ( abs `  ( F `  t )
)  _d t  e.  RR )
108 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( e  e.  RR+  /\  d  e.  RR+ ) )  ->  e  e.  RR+ )
109108ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  e  e.  RR+ )
110109rpred 11027 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  e  e.  RR )
11171, 99itgabs 21312 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  S. ( y (,) z ) ( F `  t )  _d t )  <_  S. ( y (,) z
) ( abs `  ( F `  t )
)  _d t )
112 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )
113 mblvol 21013 . . . . . . . . . . . . . . . . . 18  |-  ( ( y (,) z )  e.  dom  vol  ->  ( vol `  ( y (,) z ) )  =  ( vol* `  ( y (,) z
) ) )
11493, 113ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( vol `  ( y (,) z
) )  =  ( vol* `  (
y (,) z ) )
115 ioossre 11357 . . . . . . . . . . . . . . . . . . 19  |-  ( y (,) z )  C_  RR
116 ovolcl 20961 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y (,) z ) 
C_  RR  ->  ( vol* `  ( y (,) z ) )  e. 
RR* )
117115, 116mp1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol* `  ( y (,) z ) )  e.  RR* )
11886simp1d 1000 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  z  e.  RR )
11978simp1d 1000 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  y  e.  RR )
120118, 119resubcld 9776 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
z  -  y )  e.  RR )
121120rexrd 9433 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
z  -  y )  e.  RR* )
122 simprr 756 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( e  e.  RR+  /\  d  e.  RR+ ) )  ->  d  e.  RR+ )
123122ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  d  e.  RR+ )
124123rpxrd 11028 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  d  e.  RR* )
125 ioossicc 11381 . . . . . . . . . . . . . . . . . . . 20  |-  ( y (,) z )  C_  ( y [,] z
)
126 iccssre 11377 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y [,] z
)  C_  RR )
127119, 118, 126syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y [,] z ) 
C_  RR )
128 ovolss 20968 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y (,) z
)  C_  ( y [,] z )  /\  (
y [,] z ) 
C_  RR )  -> 
( vol* `  ( y (,) z
) )  <_  ( vol* `  ( y [,] z ) ) )
129125, 127, 128sylancr 663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol* `  ( y (,) z ) )  <_  ( vol* `  ( y [,] z
) ) )
130 simprl3 1035 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  y  <_  z )
131 ovolicc 21006 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  ( vol* `  ( y [,] z ) )  =  ( z  -  y ) )
132119, 118, 130, 131syl3anc 1218 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol* `  ( y [,] z ) )  =  ( z  -  y ) )
133129, 132breqtrd 4316 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol* `  ( y (,) z ) )  <_  ( z  -  y ) )
134119, 118, 130abssubge0d 12918 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  ( z  -  y ) )  =  ( z  -  y
) )
135 simprr 756 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  ( z  -  y ) )  < 
d )
136134, 135eqbrtrrd 4314 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
z  -  y )  <  d )
137117, 121, 124, 133, 136xrlelttrd 11134 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol* `  ( y (,) z ) )  <  d )
138114, 137syl5eqbr 4325 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol `  ( y (,) z ) )  < 
d )
13992, 138jca 532 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
( y (,) z
)  C_  D  /\  ( vol `  ( y (,) z ) )  <  d ) )
140 sseq1 3377 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( y (,) z )  ->  (
u  C_  D  <->  ( y (,) z )  C_  D
) )
141 fveq2 5691 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  ( y (,) z )  ->  ( vol `  u )  =  ( vol `  (
y (,) z ) ) )
142141breq1d 4302 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( y (,) z )  ->  (
( vol `  u
)  <  d  <->  ( vol `  ( y (,) z
) )  <  d
) )
143140, 142anbi12d 710 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( y (,) z )  ->  (
( u  C_  D  /\  ( vol `  u
)  <  d )  <->  ( ( y (,) z
)  C_  D  /\  ( vol `  ( y (,) z ) )  <  d ) ) )
144 fveq2 5691 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  t  ->  ( F `  w )  =  ( F `  t ) )
145144fveq2d 5695 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  t  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  t )
) )
146145cbvitgv 21254 . . . . . . . . . . . . . . . . . . 19  |-  S. u
( abs `  ( F `  w )
)  _d w  =  S. u ( abs `  ( F `  t
) )  _d t
147 itgeq1 21250 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  ( y (,) z )  ->  S. u ( abs `  ( F `  t )
)  _d t  =  S. ( y (,) z ) ( abs `  ( F `  t
) )  _d t )
148146, 147syl5eq 2487 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( y (,) z )  ->  S. u ( abs `  ( F `  w )
)  _d w  =  S. ( y (,) z ) ( abs `  ( F `  t
) )  _d t )
149148breq1d 4302 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( y (,) z )  ->  ( S. u ( abs `  ( F `  w )
)  _d w  < 
e  <->  S. ( y (,) z ) ( abs `  ( F `  t
) )  _d t  <  e ) )
150143, 149imbi12d 320 . . . . . . . . . . . . . . . 16  |-  ( u  =  ( y (,) z )  ->  (
( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e )  <->  ( (
( y (,) z
)  C_  D  /\  ( vol `  ( y (,) z ) )  <  d )  ->  S. ( y (,) z
) ( abs `  ( F `  t )
)  _d t  < 
e ) ) )
151150rspcv 3069 . . . . . . . . . . . . . . 15  |-  ( ( y (,) z )  e.  dom  vol  ->  ( A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e )  -> 
( ( ( y (,) z )  C_  D  /\  ( vol `  (
y (,) z ) )  <  d )  ->  S. ( y (,) z ) ( abs `  ( F `
 t ) )  _d t  <  e
) ) )
15294, 112, 139, 151syl3c 61 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  S. ( y (,) z
) ( abs `  ( F `  t )
)  _d t  < 
e )
153101, 107, 110, 111, 152lelttrd 9529 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  S. ( y (,) z ) ( F `  t )  _d t )  < 
e )
15469, 153eqbrtrd 4312 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  ( ( G `
 z )  -  ( G `  y ) ) )  <  e
)
155154expr 615 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
15626, 36, 39, 54, 155wlogle 9873 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
157156ralrimivva 2808 . . . . . . . . 9  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  d  e.  RR+ ) )  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e ) )  ->  A. y  e.  ( A [,] B ) A. z  e.  ( A [,] B ) ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
158157ex 434 . . . . . . . 8  |-  ( (
ph  /\  ( e  e.  RR+  /\  d  e.  RR+ ) )  ->  ( A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e )  ->  A. y  e.  ( A [,] B ) A. z  e.  ( A [,] B ) ( ( abs `  ( z  -  y ) )  <  d  ->  ( abs `  ( ( G `
 z )  -  ( G `  y ) ) )  <  e
) ) )
159158anassrs 648 . . . . . . 7  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e )  ->  A. y  e.  ( A [,] B ) A. z  e.  ( A [,] B ) ( ( abs `  ( z  -  y ) )  <  d  ->  ( abs `  ( ( G `
 z )  -  ( G `  y ) ) )  <  e
) ) )
160159reximdva 2828 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e )  ->  E. d  e.  RR+  A. y  e.  ( A [,] B
) A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) ) )
16116, 160mpd 15 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. y  e.  ( A [,] B
) A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
162 r19.12 2830 . . . . 5  |-  ( E. d  e.  RR+  A. y  e.  ( A [,] B
) A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e )  ->  A. y  e.  ( A [,] B ) E. d  e.  RR+  A. z  e.  ( A [,] B ) ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
163161, 162syl 16 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. y  e.  ( A [,] B
) E. d  e.  RR+  A. z  e.  ( A [,] B ) ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
164163ralrimiva 2799 . . 3  |-  ( ph  ->  A. e  e.  RR+  A. y  e.  ( A [,] B ) E. d  e.  RR+  A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
165 ralcom 2881 . . 3  |-  ( A. e  e.  RR+  A. y  e.  ( A [,] B
) E. d  e.  RR+  A. z  e.  ( A [,] B ) ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e )  <->  A. y  e.  ( A [,] B ) A. e  e.  RR+  E. d  e.  RR+  A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
166164, 165sylib 196 . 2  |-  ( ph  ->  A. y  e.  ( A [,] B ) A. e  e.  RR+  E. d  e.  RR+  A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
167 ax-resscn 9339 . . . 4  |-  RR  C_  CC
16838, 167syl6ss 3368 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  CC )
169 ssid 3375 . . 3  |-  CC  C_  CC
170 elcncf2 20466 . . 3  |-  ( ( ( A [,] B
)  C_  CC  /\  CC  C_  CC )  ->  ( G  e.  ( ( A [,] B ) -cn-> CC )  <->  ( G :
( A [,] B
) --> CC  /\  A. y  e.  ( A [,] B ) A. e  e.  RR+  E. d  e.  RR+  A. z  e.  ( A [,] B ) ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) ) ) )
171168, 169, 170sylancl 662 . 2  |-  ( ph  ->  ( G  e.  ( ( A [,] B
) -cn-> CC )  <->  ( G : ( A [,] B ) --> CC  /\  A. y  e.  ( A [,] B ) A. e  e.  RR+  E. d  e.  RR+  A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) ) ) )
1729, 166, 171mpbir2and 913 1  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2715   E.wrex 2716   _Vcvv 2972    C_ wss 3328   class class class wbr 4292    e. cmpt 4350   dom cdm 4840   -->wf 5414   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   RR*cxr 9417    < clt 9418    <_ cle 9419    - cmin 9595   RR+crp 10991   (,)cioo 11300   [,]cicc 11303   abscabs 12723   -cn->ccncf 20452   vol*covol 20946   volcvol 20947  MblFncmbf 21094   L^1cibl 21097   S.citg 21098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cc 8604  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-disj 4263  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-ofr 6321  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-omul 6925  df-er 7101  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-acn 8112  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ioc 11305  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-rlim 12967  df-sum 13164  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-mulg 15548  df-cntz 15835  df-cmn 16279  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cn 18831  df-cnp 18832  df-cmp 18990  df-tx 19135  df-hmeo 19328  df-xms 19895  df-ms 19896  df-tms 19897  df-cncf 20454  df-ovol 20948  df-vol 20949  df-mbf 21099  df-itg1 21100  df-itg2 21101  df-ibl 21102  df-itg 21103  df-0p 21148
This theorem is referenced by:  ftc2  21516
  Copyright terms: Public domain W3C validator