MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem5 Structured version   Unicode version

Theorem ftalem5 23863
Description: Lemma for fta 23866: Main proof. We have already shifted the minimum found in ftalem3 23861 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let  K be the lowest term in the polynomial that is nonzero, and let  T be a  K-th root of  -u F ( 0 )  /  A
( K ). Then an evaluation of  F ( T X ) where  X is a sufficiently small positive number yields  F ( 0 ) for the first term and 
-u F ( 0 )  x.  X ^ K for the  K-th term, and all higher terms are bounded because  X is small. Thus,  abs ( F ( T X ) )  <_  abs ( F ( 0 ) ) ( 1  -  X ^ K )  <  abs ( F ( 0 ) ), in contradiction to our choice of  F ( 0 ) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1  |-  A  =  (coeff `  F )
ftalem.2  |-  N  =  (deg `  F )
ftalem.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
ftalem.4  |-  ( ph  ->  N  e.  NN )
ftalem4.5  |-  ( ph  ->  ( F `  0
)  =/=  0 )
ftalem4.6  |-  K  =  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )
ftalem4.7  |-  T  =  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  ( 1  /  K ) )
ftalem4.8  |-  U  =  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
ftalem4.9  |-  X  =  if ( 1  <_  U ,  1 ,  U )
Assertion
Ref Expression
ftalem5  |-  ( ph  ->  E. x  e.  CC  ( abs `  ( F `
 x ) )  <  ( abs `  ( F `  0 )
) )
Distinct variable groups:    k, n, x, A    k, K, n   
k, N, n, x   
k, F, n, x    ph, k, x    S, k    T, k, x    x, U   
k, X, n, x
Allowed substitution hints:    ph( n)    S( x, n)    T( n)    U( k, n)    K( x)

Proof of Theorem ftalem5
StepHypRef Expression
1 ftalem.1 . . . . . 6  |-  A  =  (coeff `  F )
2 ftalem.2 . . . . . 6  |-  N  =  (deg `  F )
3 ftalem.3 . . . . . 6  |-  ( ph  ->  F  e.  (Poly `  S ) )
4 ftalem.4 . . . . . 6  |-  ( ph  ->  N  e.  NN )
5 ftalem4.5 . . . . . 6  |-  ( ph  ->  ( F `  0
)  =/=  0 )
6 ftalem4.6 . . . . . 6  |-  K  =  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )
7 ftalem4.7 . . . . . 6  |-  T  =  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  ( 1  /  K ) )
8 ftalem4.8 . . . . . 6  |-  U  =  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
9 ftalem4.9 . . . . . 6  |-  X  =  if ( 1  <_  U ,  1 ,  U )
101, 2, 3, 4, 5, 6, 7, 8, 9ftalem4 23862 . . . . 5  |-  ( ph  ->  ( ( K  e.  NN  /\  ( A `
 K )  =/=  0 )  /\  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) ) )
1110simprd 464 . . . 4  |-  ( ph  ->  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) )
1211simp1d 1017 . . 3  |-  ( ph  ->  T  e.  CC )
1311simp3d 1019 . . . . 5  |-  ( ph  ->  X  e.  RR+ )
1413rpred 11330 . . . 4  |-  ( ph  ->  X  e.  RR )
1514recnd 9658 . . 3  |-  ( ph  ->  X  e.  CC )
1612, 15mulcld 9652 . 2  |-  ( ph  ->  ( T  x.  X
)  e.  CC )
17 plyf 23017 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
183, 17syl 17 . . . . 5  |-  ( ph  ->  F : CC --> CC )
1918, 16ffvelrnd 6029 . . . 4  |-  ( ph  ->  ( F `  ( T  x.  X )
)  e.  CC )
2019abscld 13465 . . 3  |-  ( ph  ->  ( abs `  ( F `  ( T  x.  X ) ) )  e.  RR )
21 0cn 9624 . . . . . . 7  |-  0  e.  CC
22 ffvelrn 6026 . . . . . . 7  |-  ( ( F : CC --> CC  /\  0  e.  CC )  ->  ( F `  0
)  e.  CC )
2318, 21, 22sylancl 666 . . . . . 6  |-  ( ph  ->  ( F `  0
)  e.  CC )
2423abscld 13465 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  0 )
)  e.  RR )
2510simpld 460 . . . . . . . . 9  |-  ( ph  ->  ( K  e.  NN  /\  ( A `  K
)  =/=  0 ) )
2625simpld 460 . . . . . . . 8  |-  ( ph  ->  K  e.  NN )
2726nnnn0d 10914 . . . . . . 7  |-  ( ph  ->  K  e.  NN0 )
2814, 27reexpcld 12419 . . . . . 6  |-  ( ph  ->  ( X ^ K
)  e.  RR )
2924, 28remulcld 9660 . . . . 5  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  x.  ( X ^ K ) )  e.  RR )
3024, 29resubcld 10036 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  -  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )  e.  RR )
31 fzfid 12172 . . . . . 6  |-  ( ph  ->  ( ( K  + 
1 ) ... N
)  e.  Fin )
32 peano2nn0 10899 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
3327, 32syl 17 . . . . . . . . 9  |-  ( ph  ->  ( K  +  1 )  e.  NN0 )
34 elfzuz 11783 . . . . . . . . 9  |-  ( k  e.  ( ( K  +  1 ) ... N )  ->  k  e.  ( ZZ>= `  ( K  +  1 ) ) )
35 eluznn0 11217 . . . . . . . . 9  |-  ( ( ( K  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( K  +  1
) ) )  -> 
k  e.  NN0 )
3633, 34, 35syl2an 479 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  k  e.  NN0 )
371coef3 23051 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
383, 37syl 17 . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
39 ffvelrn 6026 . . . . . . . . 9  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
4038, 39sylan 473 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
4136, 40syldan 472 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( A `  k )  e.  CC )
4216adantr 466 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( T  x.  X )  e.  CC )
4342, 36expcld 12402 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( T  x.  X
) ^ k )  e.  CC )
4441, 43mulcld 9652 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  e.  CC )
4531, 44fsumcl 13766 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  e.  CC )
4645abscld 13465 . . . 4  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  e.  RR )
4730, 46readdcld 9659 . . 3  |-  ( ph  ->  ( ( ( abs `  ( F `  0
) )  -  (
( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )  e.  RR )
48 fzfid 12172 . . . . . 6  |-  ( ph  ->  ( 0 ... K
)  e.  Fin )
49 elfznn0 11874 . . . . . . . 8  |-  ( k  e.  ( 0 ... K )  ->  k  e.  NN0 )
5038, 49, 39syl2an 479 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... K
) )  ->  ( A `  k )  e.  CC )
51 expcl 12276 . . . . . . . 8  |-  ( ( ( T  x.  X
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( T  x.  X ) ^ k
)  e.  CC )
5216, 49, 51syl2an 479 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... K
) )  ->  (
( T  x.  X
) ^ k )  e.  CC )
5350, 52mulcld 9652 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... K
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  e.  CC )
5448, 53fsumcl 13766 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  e.  CC )
5554, 45abstrid 13485 . . . 4  |-  ( ph  ->  ( abs `  ( sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )  <_ 
( ( abs `  sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) ) )
561, 2coeid2 23058 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( T  x.  X )  e.  CC )  ->  ( F `  ( T  x.  X ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) )
573, 16, 56syl2anc 665 . . . . . 6  |-  ( ph  ->  ( F `  ( T  x.  X )
)  =  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) ) )
5826nnred 10613 . . . . . . . . 9  |-  ( ph  ->  K  e.  RR )
5958ltp1d 10526 . . . . . . . 8  |-  ( ph  ->  K  <  ( K  +  1 ) )
60 fzdisj 11813 . . . . . . . 8  |-  ( K  <  ( K  + 
1 )  ->  (
( 0 ... K
)  i^i  ( ( K  +  1 ) ... N ) )  =  (/) )
6159, 60syl 17 . . . . . . 7  |-  ( ph  ->  ( ( 0 ... K )  i^i  (
( K  +  1 ) ... N ) )  =  (/) )
62 ssrab2 3543 . . . . . . . . . . . 12  |-  { n  e.  NN  |  ( A `
 n )  =/=  0 }  C_  NN
63 nnuz 11183 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
6462, 63sseqtri 3493 . . . . . . . . . . 11  |-  { n  e.  NN  |  ( A `
 n )  =/=  0 }  C_  ( ZZ>=
`  1 )
654nnne0d 10643 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
662, 1dgreq0 23084 . . . . . . . . . . . . . . . 16  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0p  <->  ( A `  N )  =  0 ) )
673, 66syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F  =  0p  <->  ( A `  N )  =  0 ) )
68 fveq2 5872 . . . . . . . . . . . . . . . . 17  |-  ( F  =  0p  -> 
(deg `  F )  =  (deg `  0p
) )
69 dgr0 23081 . . . . . . . . . . . . . . . . 17  |-  (deg ` 
0p )  =  0
7068, 69syl6eq 2477 . . . . . . . . . . . . . . . 16  |-  ( F  =  0p  -> 
(deg `  F )  =  0 )
712, 70syl5eq 2473 . . . . . . . . . . . . . . 15  |-  ( F  =  0p  ->  N  =  0 )
7267, 71syl6bir 232 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A `  N )  =  0  ->  N  =  0 ) )
7372necon3d 2646 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  =/=  0  ->  ( A `  N
)  =/=  0 ) )
7465, 73mpd 15 . . . . . . . . . . . 12  |-  ( ph  ->  ( A `  N
)  =/=  0 )
75 fveq2 5872 . . . . . . . . . . . . . 14  |-  ( n  =  N  ->  ( A `  n )  =  ( A `  N ) )
7675neeq1d 2699 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  (
( A `  n
)  =/=  0  <->  ( A `  N )  =/=  0 ) )
7776elrab 3226 . . . . . . . . . . . 12  |-  ( N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  <->  ( N  e.  NN  /\  ( A `
 N )  =/=  0 ) )
784, 74, 77sylanbrc 668 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } )
79 infmssuzleOLD 11235 . . . . . . . . . . 11  |-  ( ( { n  e.  NN  |  ( A `  n )  =/=  0 }  C_  ( ZZ>= `  1
)  /\  N  e.  { n  e.  NN  | 
( A `  n
)  =/=  0 } )  ->  sup ( { n  e.  NN  |  ( A `  n )  =/=  0 } ,  RR ,  `'  <  )  <_  N
)
8064, 78, 79sylancr 667 . . . . . . . . . 10  |-  ( ph  ->  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )  <_  N )
816, 80syl5eqbr 4450 . . . . . . . . 9  |-  ( ph  ->  K  <_  N )
82 nn0uz 11182 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
8327, 82syl6eleq 2518 . . . . . . . . . 10  |-  ( ph  ->  K  e.  ( ZZ>= ` 
0 ) )
844nnzd 11028 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
85 elfz5 11779 . . . . . . . . . 10  |-  ( ( K  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  <->  K  <_  N ) )
8683, 84, 85syl2anc 665 . . . . . . . . 9  |-  ( ph  ->  ( K  e.  ( 0 ... N )  <-> 
K  <_  N )
)
8781, 86mpbird 235 . . . . . . . 8  |-  ( ph  ->  K  e.  ( 0 ... N ) )
88 fzsplit 11812 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  (
0 ... N )  =  ( ( 0 ... K )  u.  (
( K  +  1 ) ... N ) ) )
8987, 88syl 17 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0 ... K )  u.  ( ( K  +  1 ) ... N ) ) )
90 fzfid 12172 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
91 elfznn0 11874 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
9238, 91, 39syl2an 479 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
9316, 91, 51syl2an 479 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( T  x.  X
) ^ k )  e.  CC )
9492, 93mulcld 9652 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  e.  CC )
9561, 89, 90, 94fsumsplit 13773 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  ( sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )
9657, 95eqtrd 2461 . . . . 5  |-  ( ph  ->  ( F `  ( T  x.  X )
)  =  ( sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )
9796fveq2d 5876 . . . 4  |-  ( ph  ->  ( abs `  ( F `  ( T  x.  X ) ) )  =  ( abs `  ( sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) ) )
981coefv0 23067 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  =  ( A `  0
) )
993, 98syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  0
)  =  ( A `
 0 ) )
10099eqcomd 2428 . . . . . . . . . . 11  |-  ( ph  ->  ( A `  0
)  =  ( F `
 0 ) )
10116exp0d 12396 . . . . . . . . . . 11  |-  ( ph  ->  ( ( T  x.  X ) ^ 0 )  =  1 )
102100, 101oveq12d 6314 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ` 
0 )  x.  (
( T  x.  X
) ^ 0 ) )  =  ( ( F `  0 )  x.  1 ) )
10323mulid1d 9649 . . . . . . . . . 10  |-  ( ph  ->  ( ( F ` 
0 )  x.  1 )  =  ( F `
 0 ) )
104102, 103eqtrd 2461 . . . . . . . . 9  |-  ( ph  ->  ( ( A ` 
0 )  x.  (
( T  x.  X
) ^ 0 ) )  =  ( F `
 0 ) )
105 1e0p1 11068 . . . . . . . . . . . . 13  |-  1  =  ( 0  +  1 )
106105oveq1i 6306 . . . . . . . . . . . 12  |-  ( 1 ... K )  =  ( ( 0  +  1 ) ... K
)
107106sumeq1i 13731 . . . . . . . . . . 11  |-  sum_ k  e.  ( 1 ... K
) ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) )  =  sum_ k  e.  ( (
0  +  1 ) ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )
10826, 63syl6eleq 2518 . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  ( ZZ>= ` 
1 ) )
109 elfznn 11815 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 1 ... K )  ->  k  e.  NN )
110109nnnn0d 10914 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... K )  ->  k  e.  NN0 )
11138, 110, 39syl2an 479 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... K
) )  ->  ( A `  k )  e.  CC )
11216, 110, 51syl2an 479 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... K
) )  ->  (
( T  x.  X
) ^ k )  e.  CC )
113111, 112mulcld 9652 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... K
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  e.  CC )
114 fveq2 5872 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( A `  k )  =  ( A `  K ) )
115 oveq2 6304 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  (
( T  x.  X
) ^ k )  =  ( ( T  x.  X ) ^ K ) )
116114, 115oveq12d 6314 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  ( ( A `
 K )  x.  ( ( T  x.  X ) ^ K
) ) )
117108, 113, 116fsumm1 13779 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  ( 1 ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  ( sum_ k  e.  ( 1 ... ( K  - 
1 ) ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  ( ( A `
 K )  x.  ( ( T  x.  X ) ^ K
) ) ) )
118107, 117syl5eqr 2475 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  ( sum_ k  e.  ( 1 ... ( K  - 
1 ) ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  ( ( A `
 K )  x.  ( ( T  x.  X ) ^ K
) ) ) )
119 elfznn 11815 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... ( K  -  1 ) )  ->  k  e.  NN )
120119adantl 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  k  e.  NN )
121120nnred 10613 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  k  e.  RR )
12258adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  K  e.  RR )
123 peano2rem 9930 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  RR  ->  ( K  -  1 )  e.  RR )
124122, 123syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  ( K  -  1 )  e.  RR )
125 elfzle2 11790 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( 1 ... ( K  -  1 ) )  ->  k  <_  ( K  -  1 ) )
126125adantl 467 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  k  <_  ( K  -  1 ) )
127122ltm1d 10528 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  ( K  -  1 )  <  K )
128121, 124, 122, 126, 127lelttrd 9782 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  k  <  K )
129121, 122ltnled 9771 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
k  <  K  <->  -.  K  <_  k ) )
130128, 129mpbid 213 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  -.  K  <_  k )
131 infmssuzleOLD 11235 . . . . . . . . . . . . . . . . . . 19  |-  ( ( { n  e.  NN  |  ( A `  n )  =/=  0 }  C_  ( ZZ>= `  1
)  /\  k  e.  { n  e.  NN  | 
( A `  n
)  =/=  0 } )  ->  sup ( { n  e.  NN  |  ( A `  n )  =/=  0 } ,  RR ,  `'  <  )  <_  k
)
1326, 131syl5eqbr 4450 . . . . . . . . . . . . . . . . . 18  |-  ( ( { n  e.  NN  |  ( A `  n )  =/=  0 }  C_  ( ZZ>= `  1
)  /\  k  e.  { n  e.  NN  | 
( A `  n
)  =/=  0 } )  ->  K  <_  k )
13364, 132mpan 674 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  ->  K  <_  k )
134130, 133nsyl 124 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  -.  k  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } )
135 fveq2 5872 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  k  ->  ( A `  n )  =  ( A `  k ) )
136135neeq1d 2699 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  (
( A `  n
)  =/=  0  <->  ( A `  k )  =/=  0 ) )
137136elrab3 3227 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  (
k  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  <->  ( A `  k )  =/=  0
) )
138120, 137syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
k  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  <->  ( A `  k )  =/=  0
) )
139138necon2bbid 2678 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
( A `  k
)  =  0  <->  -.  k  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } ) )
140134, 139mpbird 235 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  ( A `  k )  =  0 )
141140oveq1d 6311 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  ( 0  x.  ( ( T  x.  X ) ^ k
) ) )
142119nnnn0d 10914 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 1 ... ( K  -  1 ) )  ->  k  e.  NN0 )
14316, 142, 51syl2an 479 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
( T  x.  X
) ^ k )  e.  CC )
144143mul02d 9820 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
0  x.  ( ( T  x.  X ) ^ k ) )  =  0 )
145141, 144eqtrd 2461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  0 )
146145sumeq2dv 13736 . . . . . . . . . . . 12  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( K  -  1 ) ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  sum_ k  e.  ( 1 ... ( K  -  1 ) ) 0 )
147 fzfi 12171 . . . . . . . . . . . . . 14  |-  ( 1 ... ( K  - 
1 ) )  e. 
Fin
148147olci 392 . . . . . . . . . . . . 13  |-  ( ( 1 ... ( K  -  1 ) ) 
C_  ( ZZ>= `  1
)  \/  ( 1 ... ( K  - 
1 ) )  e. 
Fin )
149 sumz 13755 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... ( K  -  1 ) )  C_  ( ZZ>= ` 
1 )  \/  (
1 ... ( K  - 
1 ) )  e. 
Fin )  ->  sum_ k  e.  ( 1 ... ( K  -  1 ) ) 0  =  0 )
150148, 149ax-mp 5 . . . . . . . . . . . 12  |-  sum_ k  e.  ( 1 ... ( K  -  1 ) ) 0  =  0
151146, 150syl6eq 2477 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( K  -  1 ) ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  0 )
15212, 15, 27mulexpd 12417 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( T  x.  X ) ^ K
)  =  ( ( T ^ K )  x.  ( X ^ K ) ) )
153152oveq2d 6312 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A `  K )  x.  (
( T  x.  X
) ^ K ) )  =  ( ( A `  K )  x.  ( ( T ^ K )  x.  ( X ^ K
) ) ) )
15438, 27ffvelrnd 6029 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A `  K
)  e.  CC )
15512, 27expcld 12402 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T ^ K
)  e.  CC )
15628recnd 9658 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X ^ K
)  e.  CC )
157154, 155, 156mulassd 9655 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A `
 K )  x.  ( T ^ K
) )  x.  ( X ^ K ) )  =  ( ( A `
 K )  x.  ( ( T ^ K )  x.  ( X ^ K ) ) ) )
158153, 157eqtr4d 2464 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A `  K )  x.  (
( T  x.  X
) ^ K ) )  =  ( ( ( A `  K
)  x.  ( T ^ K ) )  x.  ( X ^ K ) ) )
1597oveq1i 6306 . . . . . . . . . . . . . . . 16  |-  ( T ^ K )  =  ( ( -u (
( F `  0
)  /  ( A `
 K ) )  ^c  ( 1  /  K ) ) ^ K )
16058recnd 9658 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  K  e.  CC )
16126nnne0d 10643 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  K  =/=  0 )
162160, 161recid2d 10368 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1  /  K )  x.  K
)  =  1 )
163162oveq2d 6312 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  ( ( 1  /  K )  x.  K ) )  =  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  1 ) )
16425simprd 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( A `  K
)  =/=  0 )
16523, 154, 164divcld 10372 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( F ` 
0 )  /  ( A `  K )
)  e.  CC )
166165negcld 9962 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
-u ( ( F `
 0 )  / 
( A `  K
) )  e.  CC )
16726nnrecred 10644 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 1  /  K
)  e.  RR )
168167recnd 9658 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1  /  K
)  e.  CC )
169166, 168, 27cxpmul2d 23516 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  ( ( 1  /  K )  x.  K ) )  =  ( ( -u (
( F `  0
)  /  ( A `
 K ) )  ^c  ( 1  /  K ) ) ^ K ) )
170166cxp1d 23513 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  1 )  = 
-u ( ( F `
 0 )  / 
( A `  K
) ) )
171163, 169, 1703eqtr3d 2469 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( -u (
( F `  0
)  /  ( A `
 K ) )  ^c  ( 1  /  K ) ) ^ K )  = 
-u ( ( F `
 0 )  / 
( A `  K
) ) )
172159, 171syl5eq 2473 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T ^ K
)  =  -u (
( F `  0
)  /  ( A `
 K ) ) )
173172oveq2d 6312 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A `  K )  x.  ( T ^ K ) )  =  ( ( A `
 K )  x.  -u ( ( F ` 
0 )  /  ( A `  K )
) ) )
174154, 165mulneg2d 10061 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A `  K )  x.  -u (
( F `  0
)  /  ( A `
 K ) ) )  =  -u (
( A `  K
)  x.  ( ( F `  0 )  /  ( A `  K ) ) ) )
17523, 154, 164divcan2d 10374 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A `  K )  x.  (
( F `  0
)  /  ( A `
 K ) ) )  =  ( F `
 0 ) )
176175negeqd 9858 . . . . . . . . . . . . . 14  |-  ( ph  -> 
-u ( ( A `
 K )  x.  ( ( F ` 
0 )  /  ( A `  K )
) )  =  -u ( F `  0 ) )
177173, 174, 1763eqtrd 2465 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A `  K )  x.  ( T ^ K ) )  =  -u ( F ` 
0 ) )
178177oveq1d 6311 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A `
 K )  x.  ( T ^ K
) )  x.  ( X ^ K ) )  =  ( -u ( F `  0 )  x.  ( X ^ K
) ) )
17923, 156mulneg1d 10060 . . . . . . . . . . . 12  |-  ( ph  ->  ( -u ( F `
 0 )  x.  ( X ^ K
) )  =  -u ( ( F ` 
0 )  x.  ( X ^ K ) ) )
180158, 178, 1793eqtrd 2465 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A `  K )  x.  (
( T  x.  X
) ^ K ) )  =  -u (
( F `  0
)  x.  ( X ^ K ) ) )
181151, 180oveq12d 6314 . . . . . . . . . 10  |-  ( ph  ->  ( sum_ k  e.  ( 1 ... ( K  -  1 ) ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  +  ( ( A `  K )  x.  ( ( T  x.  X ) ^ K ) ) )  =  ( 0  + 
-u ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
18223, 156mulcld 9652 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F ` 
0 )  x.  ( X ^ K ) )  e.  CC )
183182negcld 9962 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( F `
 0 )  x.  ( X ^ K
) )  e.  CC )
184183addid2d 9823 . . . . . . . . . 10  |-  ( ph  ->  ( 0  +  -u ( ( F ` 
0 )  x.  ( X ^ K ) ) )  =  -u (
( F `  0
)  x.  ( X ^ K ) ) )
185118, 181, 1843eqtrd 2465 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  -u (
( F `  0
)  x.  ( X ^ K ) ) )
186104, 185oveq12d 6314 . . . . . . . 8  |-  ( ph  ->  ( ( ( A `
 0 )  x.  ( ( T  x.  X ) ^ 0 ) )  +  sum_ k  e.  ( (
0  +  1 ) ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  =  ( ( F `  0 )  +  -u ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
187 fveq2 5872 . . . . . . . . . 10  |-  ( k  =  0  ->  ( A `  k )  =  ( A ` 
0 ) )
188 oveq2 6304 . . . . . . . . . 10  |-  ( k  =  0  ->  (
( T  x.  X
) ^ k )  =  ( ( T  x.  X ) ^
0 ) )
189187, 188oveq12d 6314 . . . . . . . . 9  |-  ( k  =  0  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  ( ( A `
 0 )  x.  ( ( T  x.  X ) ^ 0 ) ) )
19083, 53, 189fsum1p 13781 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 0 ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  ( ( ( A `  0
)  x.  ( ( T  x.  X ) ^ 0 ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )
191103oveq1d 6311 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F `
 0 )  x.  1 )  -  (
( F `  0
)  x.  ( X ^ K ) ) )  =  ( ( F `  0 )  -  ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
192 1cnd 9648 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
19323, 192, 156subdid 10063 . . . . . . . . 9  |-  ( ph  ->  ( ( F ` 
0 )  x.  (
1  -  ( X ^ K ) ) )  =  ( ( ( F `  0
)  x.  1 )  -  ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
19423, 182negsubd 9981 . . . . . . . . 9  |-  ( ph  ->  ( ( F ` 
0 )  +  -u ( ( F ` 
0 )  x.  ( X ^ K ) ) )  =  ( ( F `  0 )  -  ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
195191, 193, 1943eqtr4d 2471 . . . . . . . 8  |-  ( ph  ->  ( ( F ` 
0 )  x.  (
1  -  ( X ^ K ) ) )  =  ( ( F `  0 )  +  -u ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
196186, 190, 1953eqtr4d 2471 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  ( ( F `  0 )  x.  ( 1  -  ( X ^ K
) ) ) )
197196fveq2d 5876 . . . . . 6  |-  ( ph  ->  ( abs `  sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  =  ( abs `  ( ( F ` 
0 )  x.  (
1  -  ( X ^ K ) ) ) ) )
198 1re 9631 . . . . . . . . 9  |-  1  e.  RR
199 resubcl 9927 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( X ^ K )  e.  RR )  -> 
( 1  -  ( X ^ K ) )  e.  RR )
200198, 28, 199sylancr 667 . . . . . . . 8  |-  ( ph  ->  ( 1  -  ( X ^ K ) )  e.  RR )
201200recnd 9658 . . . . . . 7  |-  ( ph  ->  ( 1  -  ( X ^ K ) )  e.  CC )
20223, 201absmuld 13483 . . . . . 6  |-  ( ph  ->  ( abs `  (
( F `  0
)  x.  ( 1  -  ( X ^ K ) ) ) )  =  ( ( abs `  ( F `
 0 ) )  x.  ( abs `  (
1  -  ( X ^ K ) ) ) ) )
20313rpge0d 11334 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  X )
20411simp2d 1018 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e.  RR+ )
205204rpred 11330 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  RR )
206 min1 11472 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  U  e.  RR )  ->  if ( 1  <_  U ,  1 ,  U )  <_  1
)
207198, 205, 206sylancr 667 . . . . . . . . . . . 12  |-  ( ph  ->  if ( 1  <_  U ,  1 ,  U )  <_  1
)
2089, 207syl5eqbr 4450 . . . . . . . . . . 11  |-  ( ph  ->  X  <_  1 )
209 exple1 12318 . . . . . . . . . . 11  |-  ( ( ( X  e.  RR  /\  0  <_  X  /\  X  <_  1 )  /\  K  e.  NN0 )  -> 
( X ^ K
)  <_  1 )
21014, 203, 208, 27, 209syl31anc 1267 . . . . . . . . . 10  |-  ( ph  ->  ( X ^ K
)  <_  1 )
211 subge0 10116 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( X ^ K )  e.  RR )  -> 
( 0  <_  (
1  -  ( X ^ K ) )  <-> 
( X ^ K
)  <_  1 ) )
212198, 28, 211sylancr 667 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <_  (
1  -  ( X ^ K ) )  <-> 
( X ^ K
)  <_  1 ) )
213210, 212mpbird 235 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( 1  -  ( X ^ K ) ) )
214200, 213absidd 13452 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
1  -  ( X ^ K ) ) )  =  ( 1  -  ( X ^ K ) ) )
215214oveq2d 6312 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  x.  ( abs `  ( 1  -  ( X ^ K ) ) ) )  =  ( ( abs `  ( F `  0 )
)  x.  ( 1  -  ( X ^ K ) ) ) )
21624recnd 9658 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( F `  0 )
)  e.  CC )
217216, 192, 156subdid 10063 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  x.  ( 1  -  ( X ^ K ) ) )  =  ( ( ( abs `  ( F `
 0 ) )  x.  1 )  -  ( ( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) ) )
218216mulid1d 9649 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  x.  1 )  =  ( abs `  ( F `  0 )
) )
219218oveq1d 6311 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  ( F `  0
) )  x.  1 )  -  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )  =  ( ( abs `  ( F `  0
) )  -  (
( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) ) )
220215, 217, 2193eqtrd 2465 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  x.  ( abs `  ( 1  -  ( X ^ K ) ) ) )  =  ( ( abs `  ( F `  0 )
)  -  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) ) )
221197, 202, 2203eqtrrd 2466 . . . . 5  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  -  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )  =  ( abs `  sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) ) )
222221oveq1d 6311 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( F `  0
) )  -  (
( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )  =  ( ( abs `  sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) ) )
22355, 97, 2223brtr4d 4447 . . 3  |-  ( ph  ->  ( abs `  ( F `  ( T  x.  X ) ) )  <_  ( ( ( abs `  ( F `
 0 ) )  -  ( ( abs `  ( F `  0
) )  x.  ( X ^ K ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) ) )
22444abscld 13465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) ) )  e.  RR )
22531, 224fsumrecl 13767 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  e.  RR )
22631, 44fsumabs 13828 . . . . . 6  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  <_  sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) ) )
227 expcl 12276 . . . . . . . . . . . . 13  |-  ( ( T  e.  CC  /\  k  e.  NN0 )  -> 
( T ^ k
)  e.  CC )
22812, 227sylan 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( T ^ k )  e.  CC )
22936, 228syldan 472 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( T ^ k )  e.  CC )
23041, 229mulcld 9652 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( A `  k
)  x.  ( T ^ k ) )  e.  CC )
231230abscld 13465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( T ^ k
) ) )  e.  RR )
23231, 231fsumrecl 13767 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  e.  RR )
23314, 33reexpcld 12419 . . . . . . . 8  |-  ( ph  ->  ( X ^ ( K  +  1 ) )  e.  RR )
234232, 233remulcld 9660 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  e.  RR )
235233adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( X ^ ( K  + 
1 ) )  e.  RR )
236231, 235remulcld 9660 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  e.  RR )
23712adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  T  e.  CC )
23815adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  X  e.  CC )
239237, 238, 36mulexpd 12417 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( T  x.  X
) ^ k )  =  ( ( T ^ k )  x.  ( X ^ k
) ) )
240239oveq2d 6312 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  ( ( A `
 k )  x.  ( ( T ^
k )  x.  ( X ^ k ) ) ) )
24114adantr 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  X  e.  RR )
242241, 36reexpcld 12419 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( X ^ k )  e.  RR )
243242recnd 9658 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( X ^ k )  e.  CC )
24441, 229, 243mulassd 9655 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( ( A `  k )  x.  ( T ^ k ) )  x.  ( X ^
k ) )  =  ( ( A `  k )  x.  (
( T ^ k
)  x.  ( X ^ k ) ) ) )
245240, 244eqtr4d 2464 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  ( ( ( A `  k )  x.  ( T ^
k ) )  x.  ( X ^ k
) ) )
246245fveq2d 5876 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) ) )  =  ( abs `  (
( ( A `  k )  x.  ( T ^ k ) )  x.  ( X ^
k ) ) ) )
247230, 243absmuld 13483 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( ( A `  k )  x.  ( T ^
k ) )  x.  ( X ^ k
) ) )  =  ( ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( abs `  ( X ^ k
) ) ) )
248 elfzelz 11787 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( K  +  1 ) ... N )  ->  k  e.  ZZ )
249 rpexpcl 12277 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  RR+  /\  k  e.  ZZ )  ->  ( X ^ k )  e.  RR+ )
25013, 248, 249syl2an 479 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( X ^ k )  e.  RR+ )
251250rpge0d 11334 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( X ^ k
) )
252242, 251absidd 13452 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( X ^
k ) )  =  ( X ^ k
) )
253252oveq2d 6312 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( abs `  ( X ^ k
) ) )  =  ( ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ k ) ) )
254246, 247, 2533eqtrd 2465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) ) )  =  ( ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ k ) ) )
255230absge0d 13473 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) ) )
25633adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( K  +  1 )  e.  NN0 )
25734adantl 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  k  e.  ( ZZ>= `  ( K  +  1 ) ) )
258203adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  X )
259208adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  X  <_  1 )
260241, 256, 257, 258, 259leexp2rd 12435 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( X ^ k )  <_ 
( X ^ ( K  +  1 ) ) )
261242, 235, 231, 255, 260lemul2ad 10536 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ k ) )  <_  ( ( abs `  ( ( A `  k )  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) ) )
262254, 261eqbrtrd 4437 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) ) )  <_ 
( ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) ) )
26331, 224, 236, 262fsumle 13826 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  <_  sum_ k  e.  ( ( K  + 
1 ) ... N
) ( ( abs `  ( ( A `  k )  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) ) )
264233recnd 9658 . . . . . . . . 9  |-  ( ph  ->  ( X ^ ( K  +  1 ) )  e.  CC )
265231recnd 9658 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( T ^ k
) ) )  e.  CC )
26631, 264, 265fsummulc1 13813 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  =  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) ) )
267263, 266breqtrrd 4443 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  <_  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  x.  ( X ^
( K  +  1 ) ) ) )
26815, 27expp1d 12403 . . . . . . . . . . 11  |-  ( ph  ->  ( X ^ ( K  +  1 ) )  =  ( ( X ^ K )  x.  X ) )
269156, 15mulcomd 9653 . . . . . . . . . . 11  |-  ( ph  ->  ( ( X ^ K )  x.  X
)  =  ( X  x.  ( X ^ K ) ) )
270268, 269eqtrd 2461 . . . . . . . . . 10  |-  ( ph  ->  ( X ^ ( K  +  1 ) )  =  ( X  x.  ( X ^ K ) ) )
271270oveq2d 6312 . . . . . . . . 9  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  =  ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X  x.  ( X ^ K ) ) ) )
272232recnd 9658 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  e.  CC )
273272, 15, 156mulassd 9655 . . . . . . . . 9  |-  ( ph  ->  ( ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  X )  x.  ( X ^ K ) )  =  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X  x.  ( X ^ K ) ) ) )
274271, 273eqtr4d 2464 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  =  ( ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  x.  X )  x.  ( X ^ K
) ) )
275232, 14remulcld 9660 . . . . . . . . 9  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  X )  e.  RR )
276 nnssz 10946 . . . . . . . . . . . 12  |-  NN  C_  ZZ
27762, 276sstri 3470 . . . . . . . . . . 11  |-  { n  e.  NN  |  ( A `
 n )  =/=  0 }  C_  ZZ
278 ne0i 3764 . . . . . . . . . . . . . 14  |-  ( N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  ->  { n  e.  NN  |  ( A `
 n )  =/=  0 }  =/=  (/) )
27978, 278syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  { n  e.  NN  |  ( A `  n )  =/=  0 }  =/=  (/) )
280 infmssuzclOLD 11236 . . . . . . . . . . . . 13  |-  ( ( { n  e.  NN  |  ( A `  n )  =/=  0 }  C_  ( ZZ>= `  1
)  /\  { n  e.  NN  |  ( A `
 n )  =/=  0 }  =/=  (/) )  ->  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  ( A `  n )  =/=  0 } )
28164, 279, 280sylancr 667 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  ( A `  n )  =/=  0 } )
2826, 281syl5eqel 2512 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } )
283277, 282sseldi 3459 . . . . . . . . . 10  |-  ( ph  ->  K  e.  ZZ )
28413, 283rpexpcld 12425 . . . . . . . . 9  |-  ( ph  ->  ( X ^ K
)  e.  RR+ )
285 peano2re 9795 . . . . . . . . . . . 12  |-  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  e.  RR  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 )  e.  RR )
286232, 285syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  e.  RR )
287286, 14remulcld 9660 . . . . . . . . . 10  |-  ( ph  ->  ( ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  x.  X )  e.  RR )
288232ltp1d 10526 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  <  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
289232, 286, 13, 288ltmul1dd 11382 . . . . . . . . . 10  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  X )  <  ( ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 )  x.  X ) )
290 min2 11473 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  U  e.  RR )  ->  if ( 1  <_  U ,  1 ,  U )  <_  U
)
291198, 205, 290sylancr 667 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( 1  <_  U ,  1 ,  U )  <_  U
)
2929, 291syl5eqbr 4450 . . . . . . . . . . . 12  |-  ( ph  ->  X  <_  U )
293292, 8syl6breq 4456 . . . . . . . . . . 11  |-  ( ph  ->  X  <_  ( ( abs `  ( F ` 
0 ) )  / 
( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 ) ) )
294 0red 9633 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  RR )
29531, 231, 255fsumge0 13822 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <_  sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) ) )
296294, 232, 286, 295, 288lelttrd 9782 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
297 lemuldiv2 10476 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  ( abs `  ( F `
 0 ) )  e.  RR  /\  (
( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  e.  RR  /\  0  <  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 ) ) )  ->  (
( ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  x.  X )  <_ 
( abs `  ( F `  0 )
)  <->  X  <_  ( ( abs `  ( F `
 0 ) )  /  ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 ) ) ) )
29814, 24, 286, 296, 297syl112anc 1268 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 )  x.  X )  <_  ( abs `  ( F ` 
0 ) )  <->  X  <_  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) ) ) )
299293, 298mpbird 235 . . . . . . . . . 10  |-  ( ph  ->  ( ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  x.  X )  <_ 
( abs `  ( F `  0 )
) )
300275, 287, 24, 289, 299ltletrd 9784 . . . . . . . . 9  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  X )  <  ( abs `  ( F `  0 )
) )
301275, 24, 284, 300ltmul1dd 11382 . . . . . . . 8  |-  ( ph  ->  ( ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  X )  x.  ( X ^ K ) )  < 
( ( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) )
302274, 301eqbrtrd 4437 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  <  ( ( abs `  ( F `  0
) )  x.  ( X ^ K ) ) )
303225, 234, 29, 267, 302lelttrd 9782 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  <  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )
30446, 225, 29, 226, 303lelttrd 9782 . . . . 5  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  <  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )
30546, 29, 24, 304ltsub2dd 10215 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  -  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )  <  ( ( abs `  ( F `  0
) )  -  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) ) )
30630, 46, 24ltaddsubd 10202 . . . 4  |-  ( ph  ->  ( ( ( ( abs `  ( F `
 0 ) )  -  ( ( abs `  ( F `  0
) )  x.  ( X ^ K ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )  < 
( abs `  ( F `  0 )
)  <->  ( ( abs `  ( F `  0
) )  -  (
( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) )  <  ( ( abs `  ( F `
 0 ) )  -  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) ) ) ) )
307305, 306mpbird 235 . . 3  |-  ( ph  ->  ( ( ( abs `  ( F `  0
) )  -  (
( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )  < 
( abs `  ( F `  0 )
) )
30820, 47, 24, 223, 307lelttrd 9782 . 2  |-  ( ph  ->  ( abs `  ( F `  ( T  x.  X ) ) )  <  ( abs `  ( F `  0 )
) )
309 fveq2 5872 . . . . 5  |-  ( x  =  ( T  x.  X )  ->  ( F `  x )  =  ( F `  ( T  x.  X
) ) )
310309fveq2d 5876 . . . 4  |-  ( x  =  ( T  x.  X )  ->  ( abs `  ( F `  x ) )  =  ( abs `  ( F `  ( T  x.  X ) ) ) )
311310breq1d 4427 . . 3  |-  ( x  =  ( T  x.  X )  ->  (
( abs `  ( F `  x )
)  <  ( abs `  ( F `  0
) )  <->  ( abs `  ( F `  ( T  x.  X )
) )  <  ( abs `  ( F ` 
0 ) ) ) )
312311rspcev 3179 . 2  |-  ( ( ( T  x.  X
)  e.  CC  /\  ( abs `  ( F `
 ( T  x.  X ) ) )  <  ( abs `  ( F `  0 )
) )  ->  E. x  e.  CC  ( abs `  ( F `  x )
)  <  ( abs `  ( F `  0
) ) )
31316, 308, 312syl2anc 665 1  |-  ( ph  ->  E. x  e.  CC  ( abs `  ( F `
 x ) )  <  ( abs `  ( F `  0 )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867    =/= wne 2616   E.wrex 2774   {crab 2777    u. cun 3431    i^i cin 3432    C_ wss 3433   (/)c0 3758   ifcif 3906   class class class wbr 4417   `'ccnv 4844   -->wf 5588   ` cfv 5592  (class class class)co 6296   Fincfn 7568   supcsup 7951   CCcc 9526   RRcr 9527   0cc0 9528   1c1 9529    + caddc 9531    x. cmul 9533    < clt 9664    <_ cle 9665    - cmin 9849   -ucneg 9850    / cdiv 10258   NNcn 10598   NN0cn0 10858   ZZcz 10926   ZZ>=cuz 11148   RR+crp 11291   ...cfz 11771   ^cexp 12258   abscabs 13265   sum_csu 13719   0pc0p 22501  Polycply 23003  coeffccoe 23005  degcdgr 23006    ^c ccxp 23367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-inf2 8137  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606  ax-addf 9607  ax-mulf 9608
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6536  df-om 6698  df-1st 6798  df-2nd 6799  df-supp 6917  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-2o 7182  df-oadd 7185  df-er 7362  df-map 7473  df-pm 7474  df-ixp 7522  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-fsupp 7881  df-fi 7922  df-sup 7953  df-inf 7954  df-oi 8016  df-card 8363  df-cda 8587  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-4 10659  df-5 10660  df-6 10661  df-7 10662  df-8 10663  df-9 10664  df-10 10665  df-n0 10859  df-z 10927  df-dec 11041  df-uz 11149  df-q 11254  df-rp 11292  df-xneg 11398  df-xadd 11399  df-xmul 11400  df-ioo 11628  df-ioc 11629  df-ico 11630  df-icc 11631  df-fz 11772  df-fzo 11903  df-fl 12014  df-mod 12083  df-seq 12200  df-exp 12259  df-fac 12446  df-bc 12474  df-hash 12502  df-shft 13098  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-limsup 13493  df-clim 13519  df-rlim 13520  df-sum 13720  df-ef 14088  df-sin 14090  df-cos 14091  df-pi 14093  df-struct 15075  df-ndx 15076  df-slot 15077  df-base 15078  df-sets 15079  df-ress 15080  df-plusg 15155  df-mulr 15156  df-starv 15157  df-sca 15158  df-vsca 15159  df-ip 15160  df-tset 15161  df-ple 15162  df-ds 15164  df-unif 15165  df-hom 15166  df-cco 15167  df-rest 15273  df-topn 15274  df-0g 15292  df-gsum 15293  df-topgen 15294  df-pt 15295  df-prds 15298  df-xrs 15352  df-qtop 15357  df-imas 15358  df-xps 15360  df-mre 15436  df-mrc 15437  df-acs 15439  df-mgm 16432  df-sgrp 16471  df-mnd 16481  df-submnd 16527  df-mulg 16620  df-cntz 16915  df-cmn 17360  df-psmet 18890  df-xmet 18891  df-met 18892  df-bl 18893  df-mopn 18894  df-fbas 18895  df-fg 18896  df-cnfld 18899  df-top 19845  df-bases 19846  df-topon 19847  df-topsp 19848  df-cld 19958  df-ntr 19959  df-cls 19960  df-nei 20038  df-lp 20076  df-perf 20077  df-cn 20167  df-cnp 20168  df-haus 20255  df-tx 20501  df-hmeo 20694  df-fil 20785  df-fm 20877  df-flim 20878  df-flf 20879  df-xms 21259  df-ms 21260  df-tms 21261  df-cncf 21799  df-0p 22502  df-limc 22695  df-dv 22696  df-ply 23007  df-coe 23009  df-dgr 23010  df-log 23368  df-cxp 23369
This theorem is referenced by:  ftalem6  23864
  Copyright terms: Public domain W3C validator