MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem5 Structured version   Unicode version

Theorem ftalem5 23078
Description: Lemma for fta 23081: Main proof. We have already shifted the minimum found in ftalem3 23076 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let  K be the lowest term in the polynomial that is nonzero, and let  T be a  K-th root of  -u F ( 0 )  /  A
( K ). Then an evaluation of  F ( T X ) where  X is a sufficiently small positive number yields  F ( 0 ) for the first term and 
-u F ( 0 )  x.  X ^ K for the  K-th term, and all higher terms are bounded because  X is small. Thus,  abs ( F ( T X ) )  <_  abs ( F ( 0 ) ) ( 1  -  X ^ K )  <  abs ( F ( 0 ) ), in contradiction to our choice of  F ( 0 ) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1  |-  A  =  (coeff `  F )
ftalem.2  |-  N  =  (deg `  F )
ftalem.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
ftalem.4  |-  ( ph  ->  N  e.  NN )
ftalem4.5  |-  ( ph  ->  ( F `  0
)  =/=  0 )
ftalem4.6  |-  K  =  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )
ftalem4.7  |-  T  =  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  ( 1  /  K ) )
ftalem4.8  |-  U  =  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
ftalem4.9  |-  X  =  if ( 1  <_  U ,  1 ,  U )
Assertion
Ref Expression
ftalem5  |-  ( ph  ->  E. x  e.  CC  ( abs `  ( F `
 x ) )  <  ( abs `  ( F `  0 )
) )
Distinct variable groups:    k, n, x, A    k, K, n   
k, N, n, x   
k, F, n, x    ph, k, x    S, k    T, k, x    x, U   
k, X, n, x
Allowed substitution hints:    ph( n)    S( x, n)    T( n)    U( k, n)    K( x)

Proof of Theorem ftalem5
StepHypRef Expression
1 ftalem.1 . . . . . 6  |-  A  =  (coeff `  F )
2 ftalem.2 . . . . . 6  |-  N  =  (deg `  F )
3 ftalem.3 . . . . . 6  |-  ( ph  ->  F  e.  (Poly `  S ) )
4 ftalem.4 . . . . . 6  |-  ( ph  ->  N  e.  NN )
5 ftalem4.5 . . . . . 6  |-  ( ph  ->  ( F `  0
)  =/=  0 )
6 ftalem4.6 . . . . . 6  |-  K  =  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )
7 ftalem4.7 . . . . . 6  |-  T  =  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  ( 1  /  K ) )
8 ftalem4.8 . . . . . 6  |-  U  =  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
9 ftalem4.9 . . . . . 6  |-  X  =  if ( 1  <_  U ,  1 ,  U )
101, 2, 3, 4, 5, 6, 7, 8, 9ftalem4 23077 . . . . 5  |-  ( ph  ->  ( ( K  e.  NN  /\  ( A `
 K )  =/=  0 )  /\  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) ) )
1110simprd 463 . . . 4  |-  ( ph  ->  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) )
1211simp1d 1008 . . 3  |-  ( ph  ->  T  e.  CC )
1311simp3d 1010 . . . . 5  |-  ( ph  ->  X  e.  RR+ )
1413rpred 11252 . . . 4  |-  ( ph  ->  X  e.  RR )
1514recnd 9618 . . 3  |-  ( ph  ->  X  e.  CC )
1612, 15mulcld 9612 . 2  |-  ( ph  ->  ( T  x.  X
)  e.  CC )
17 plyf 22330 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
183, 17syl 16 . . . . 5  |-  ( ph  ->  F : CC --> CC )
1918, 16ffvelrnd 6020 . . . 4  |-  ( ph  ->  ( F `  ( T  x.  X )
)  e.  CC )
2019abscld 13226 . . 3  |-  ( ph  ->  ( abs `  ( F `  ( T  x.  X ) ) )  e.  RR )
21 0cn 9584 . . . . . . 7  |-  0  e.  CC
22 ffvelrn 6017 . . . . . . 7  |-  ( ( F : CC --> CC  /\  0  e.  CC )  ->  ( F `  0
)  e.  CC )
2318, 21, 22sylancl 662 . . . . . 6  |-  ( ph  ->  ( F `  0
)  e.  CC )
2423abscld 13226 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  0 )
)  e.  RR )
2510simpld 459 . . . . . . . . 9  |-  ( ph  ->  ( K  e.  NN  /\  ( A `  K
)  =/=  0 ) )
2625simpld 459 . . . . . . . 8  |-  ( ph  ->  K  e.  NN )
2726nnnn0d 10848 . . . . . . 7  |-  ( ph  ->  K  e.  NN0 )
2814, 27reexpcld 12291 . . . . . 6  |-  ( ph  ->  ( X ^ K
)  e.  RR )
2924, 28remulcld 9620 . . . . 5  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  x.  ( X ^ K ) )  e.  RR )
3024, 29resubcld 9983 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  -  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )  e.  RR )
31 fzfid 12047 . . . . . 6  |-  ( ph  ->  ( ( K  + 
1 ) ... N
)  e.  Fin )
32 peano2nn0 10832 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
3327, 32syl 16 . . . . . . . . 9  |-  ( ph  ->  ( K  +  1 )  e.  NN0 )
34 elfzuz 11680 . . . . . . . . 9  |-  ( k  e.  ( ( K  +  1 ) ... N )  ->  k  e.  ( ZZ>= `  ( K  +  1 ) ) )
35 eluznn0 11147 . . . . . . . . 9  |-  ( ( ( K  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( K  +  1
) ) )  -> 
k  e.  NN0 )
3633, 34, 35syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  k  e.  NN0 )
371coef3 22364 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
383, 37syl 16 . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
39 ffvelrn 6017 . . . . . . . . 9  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
4038, 39sylan 471 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
4136, 40syldan 470 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( A `  k )  e.  CC )
4216adantr 465 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( T  x.  X )  e.  CC )
4342, 36expcld 12274 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( T  x.  X
) ^ k )  e.  CC )
4441, 43mulcld 9612 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  e.  CC )
4531, 44fsumcl 13514 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  e.  CC )
4645abscld 13226 . . . 4  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  e.  RR )
4730, 46readdcld 9619 . . 3  |-  ( ph  ->  ( ( ( abs `  ( F `  0
) )  -  (
( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )  e.  RR )
48 fzfid 12047 . . . . . 6  |-  ( ph  ->  ( 0 ... K
)  e.  Fin )
49 elfznn0 11766 . . . . . . . 8  |-  ( k  e.  ( 0 ... K )  ->  k  e.  NN0 )
5038, 49, 39syl2an 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... K
) )  ->  ( A `  k )  e.  CC )
51 expcl 12148 . . . . . . . 8  |-  ( ( ( T  x.  X
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( T  x.  X ) ^ k
)  e.  CC )
5216, 49, 51syl2an 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... K
) )  ->  (
( T  x.  X
) ^ k )  e.  CC )
5350, 52mulcld 9612 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... K
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  e.  CC )
5448, 53fsumcl 13514 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  e.  CC )
5554, 45abstrid 13246 . . . 4  |-  ( ph  ->  ( abs `  ( sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )  <_ 
( ( abs `  sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) ) )
561, 2coeid2 22371 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( T  x.  X )  e.  CC )  ->  ( F `  ( T  x.  X ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) )
573, 16, 56syl2anc 661 . . . . . 6  |-  ( ph  ->  ( F `  ( T  x.  X )
)  =  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) ) )
5826nnred 10547 . . . . . . . . 9  |-  ( ph  ->  K  e.  RR )
5958ltp1d 10472 . . . . . . . 8  |-  ( ph  ->  K  <  ( K  +  1 ) )
60 fzdisj 11708 . . . . . . . 8  |-  ( K  <  ( K  + 
1 )  ->  (
( 0 ... K
)  i^i  ( ( K  +  1 ) ... N ) )  =  (/) )
6159, 60syl 16 . . . . . . 7  |-  ( ph  ->  ( ( 0 ... K )  i^i  (
( K  +  1 ) ... N ) )  =  (/) )
62 ssrab2 3585 . . . . . . . . . . . 12  |-  { n  e.  NN  |  ( A `
 n )  =/=  0 }  C_  NN
63 nnuz 11113 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
6462, 63sseqtri 3536 . . . . . . . . . . 11  |-  { n  e.  NN  |  ( A `
 n )  =/=  0 }  C_  ( ZZ>=
`  1 )
654nnne0d 10576 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
662, 1dgreq0 22396 . . . . . . . . . . . . . . . 16  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0p  <->  ( A `  N )  =  0 ) )
673, 66syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F  =  0p  <->  ( A `  N )  =  0 ) )
68 fveq2 5864 . . . . . . . . . . . . . . . . 17  |-  ( F  =  0p  -> 
(deg `  F )  =  (deg `  0p
) )
69 dgr0 22393 . . . . . . . . . . . . . . . . 17  |-  (deg ` 
0p )  =  0
7068, 69syl6eq 2524 . . . . . . . . . . . . . . . 16  |-  ( F  =  0p  -> 
(deg `  F )  =  0 )
712, 70syl5eq 2520 . . . . . . . . . . . . . . 15  |-  ( F  =  0p  ->  N  =  0 )
7267, 71syl6bir 229 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A `  N )  =  0  ->  N  =  0 ) )
7372necon3d 2691 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  =/=  0  ->  ( A `  N
)  =/=  0 ) )
7465, 73mpd 15 . . . . . . . . . . . 12  |-  ( ph  ->  ( A `  N
)  =/=  0 )
75 fveq2 5864 . . . . . . . . . . . . . 14  |-  ( n  =  N  ->  ( A `  n )  =  ( A `  N ) )
7675neeq1d 2744 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  (
( A `  n
)  =/=  0  <->  ( A `  N )  =/=  0 ) )
7776elrab 3261 . . . . . . . . . . . 12  |-  ( N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  <->  ( N  e.  NN  /\  ( A `
 N )  =/=  0 ) )
784, 74, 77sylanbrc 664 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } )
79 infmssuzle 11160 . . . . . . . . . . 11  |-  ( ( { n  e.  NN  |  ( A `  n )  =/=  0 }  C_  ( ZZ>= `  1
)  /\  N  e.  { n  e.  NN  | 
( A `  n
)  =/=  0 } )  ->  sup ( { n  e.  NN  |  ( A `  n )  =/=  0 } ,  RR ,  `'  <  )  <_  N
)
8064, 78, 79sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )  <_  N )
816, 80syl5eqbr 4480 . . . . . . . . 9  |-  ( ph  ->  K  <_  N )
82 nn0uz 11112 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
8327, 82syl6eleq 2565 . . . . . . . . . 10  |-  ( ph  ->  K  e.  ( ZZ>= ` 
0 ) )
844nnzd 10961 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
85 elfz5 11676 . . . . . . . . . 10  |-  ( ( K  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  <->  K  <_  N ) )
8683, 84, 85syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( K  e.  ( 0 ... N )  <-> 
K  <_  N )
)
8781, 86mpbird 232 . . . . . . . 8  |-  ( ph  ->  K  e.  ( 0 ... N ) )
88 fzsplit 11707 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  (
0 ... N )  =  ( ( 0 ... K )  u.  (
( K  +  1 ) ... N ) ) )
8987, 88syl 16 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0 ... K )  u.  ( ( K  +  1 ) ... N ) ) )
90 fzfid 12047 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
91 elfznn0 11766 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
9238, 91, 39syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
9316, 91, 51syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( T  x.  X
) ^ k )  e.  CC )
9492, 93mulcld 9612 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  e.  CC )
9561, 89, 90, 94fsumsplit 13521 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  ( sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )
9657, 95eqtrd 2508 . . . . 5  |-  ( ph  ->  ( F `  ( T  x.  X )
)  =  ( sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )
9796fveq2d 5868 . . . 4  |-  ( ph  ->  ( abs `  ( F `  ( T  x.  X ) ) )  =  ( abs `  ( sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) ) )
981coefv0 22379 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  =  ( A `  0
) )
993, 98syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  0
)  =  ( A `
 0 ) )
10099eqcomd 2475 . . . . . . . . . . 11  |-  ( ph  ->  ( A `  0
)  =  ( F `
 0 ) )
10116exp0d 12268 . . . . . . . . . . 11  |-  ( ph  ->  ( ( T  x.  X ) ^ 0 )  =  1 )
102100, 101oveq12d 6300 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ` 
0 )  x.  (
( T  x.  X
) ^ 0 ) )  =  ( ( F `  0 )  x.  1 ) )
10323mulid1d 9609 . . . . . . . . . 10  |-  ( ph  ->  ( ( F ` 
0 )  x.  1 )  =  ( F `
 0 ) )
104102, 103eqtrd 2508 . . . . . . . . 9  |-  ( ph  ->  ( ( A ` 
0 )  x.  (
( T  x.  X
) ^ 0 ) )  =  ( F `
 0 ) )
105 1e0p1 11000 . . . . . . . . . . . . 13  |-  1  =  ( 0  +  1 )
106105oveq1i 6292 . . . . . . . . . . . 12  |-  ( 1 ... K )  =  ( ( 0  +  1 ) ... K
)
107106sumeq1i 13479 . . . . . . . . . . 11  |-  sum_ k  e.  ( 1 ... K
) ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) )  =  sum_ k  e.  ( (
0  +  1 ) ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )
10826, 63syl6eleq 2565 . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  ( ZZ>= ` 
1 ) )
109 elfznn 11710 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 1 ... K )  ->  k  e.  NN )
110109nnnn0d 10848 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... K )  ->  k  e.  NN0 )
11138, 110, 39syl2an 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... K
) )  ->  ( A `  k )  e.  CC )
11216, 110, 51syl2an 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... K
) )  ->  (
( T  x.  X
) ^ k )  e.  CC )
113111, 112mulcld 9612 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... K
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  e.  CC )
114 fveq2 5864 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( A `  k )  =  ( A `  K ) )
115 oveq2 6290 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  (
( T  x.  X
) ^ k )  =  ( ( T  x.  X ) ^ K ) )
116114, 115oveq12d 6300 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  ( ( A `
 K )  x.  ( ( T  x.  X ) ^ K
) ) )
117108, 113, 116fsumm1 13525 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  ( 1 ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  ( sum_ k  e.  ( 1 ... ( K  - 
1 ) ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  ( ( A `
 K )  x.  ( ( T  x.  X ) ^ K
) ) ) )
118107, 117syl5eqr 2522 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  ( sum_ k  e.  ( 1 ... ( K  - 
1 ) ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  +  ( ( A `
 K )  x.  ( ( T  x.  X ) ^ K
) ) ) )
119 elfznn 11710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... ( K  -  1 ) )  ->  k  e.  NN )
120119adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  k  e.  NN )
121120nnred 10547 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  k  e.  RR )
12258adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  K  e.  RR )
123 peano2rem 9882 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  RR  ->  ( K  -  1 )  e.  RR )
124122, 123syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  ( K  -  1 )  e.  RR )
125 elfzle2 11686 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( 1 ... ( K  -  1 ) )  ->  k  <_  ( K  -  1 ) )
126125adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  k  <_  ( K  -  1 ) )
127122ltm1d 10474 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  ( K  -  1 )  <  K )
128121, 124, 122, 126, 127lelttrd 9735 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  k  <  K )
129121, 122ltnled 9727 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
k  <  K  <->  -.  K  <_  k ) )
130128, 129mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  -.  K  <_  k )
131 infmssuzle 11160 . . . . . . . . . . . . . . . . . . 19  |-  ( ( { n  e.  NN  |  ( A `  n )  =/=  0 }  C_  ( ZZ>= `  1
)  /\  k  e.  { n  e.  NN  | 
( A `  n
)  =/=  0 } )  ->  sup ( { n  e.  NN  |  ( A `  n )  =/=  0 } ,  RR ,  `'  <  )  <_  k
)
1326, 131syl5eqbr 4480 . . . . . . . . . . . . . . . . . 18  |-  ( ( { n  e.  NN  |  ( A `  n )  =/=  0 }  C_  ( ZZ>= `  1
)  /\  k  e.  { n  e.  NN  | 
( A `  n
)  =/=  0 } )  ->  K  <_  k )
13364, 132mpan 670 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  ->  K  <_  k )
134130, 133nsyl 121 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  -.  k  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } )
135 fveq2 5864 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  k  ->  ( A `  n )  =  ( A `  k ) )
136135neeq1d 2744 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  (
( A `  n
)  =/=  0  <->  ( A `  k )  =/=  0 ) )
137136elrab3 3262 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  (
k  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  <->  ( A `  k )  =/=  0
) )
138120, 137syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
k  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  <->  ( A `  k )  =/=  0
) )
139138necon2bbid 2723 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
( A `  k
)  =  0  <->  -.  k  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } ) )
140134, 139mpbird 232 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  ( A `  k )  =  0 )
141140oveq1d 6297 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  ( 0  x.  ( ( T  x.  X ) ^ k
) ) )
142119nnnn0d 10848 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 1 ... ( K  -  1 ) )  ->  k  e.  NN0 )
14316, 142, 51syl2an 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
( T  x.  X
) ^ k )  e.  CC )
144143mul02d 9773 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
0  x.  ( ( T  x.  X ) ^ k ) )  =  0 )
145141, 144eqtrd 2508 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... ( K  -  1 ) ) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  0 )
146145sumeq2dv 13484 . . . . . . . . . . . 12  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( K  -  1 ) ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  sum_ k  e.  ( 1 ... ( K  -  1 ) ) 0 )
147 fzfi 12046 . . . . . . . . . . . . . 14  |-  ( 1 ... ( K  - 
1 ) )  e. 
Fin
148147olci 391 . . . . . . . . . . . . 13  |-  ( ( 1 ... ( K  -  1 ) ) 
C_  ( ZZ>= `  1
)  \/  ( 1 ... ( K  - 
1 ) )  e. 
Fin )
149 sumz 13503 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... ( K  -  1 ) )  C_  ( ZZ>= ` 
1 )  \/  (
1 ... ( K  - 
1 ) )  e. 
Fin )  ->  sum_ k  e.  ( 1 ... ( K  -  1 ) ) 0  =  0 )
150148, 149ax-mp 5 . . . . . . . . . . . 12  |-  sum_ k  e.  ( 1 ... ( K  -  1 ) ) 0  =  0
151146, 150syl6eq 2524 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( K  -  1 ) ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  0 )
15212, 15, 27mulexpd 12289 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( T  x.  X ) ^ K
)  =  ( ( T ^ K )  x.  ( X ^ K ) ) )
153152oveq2d 6298 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A `  K )  x.  (
( T  x.  X
) ^ K ) )  =  ( ( A `  K )  x.  ( ( T ^ K )  x.  ( X ^ K
) ) ) )
15438, 27ffvelrnd 6020 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A `  K
)  e.  CC )
15512, 27expcld 12274 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T ^ K
)  e.  CC )
15628recnd 9618 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X ^ K
)  e.  CC )
157154, 155, 156mulassd 9615 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A `
 K )  x.  ( T ^ K
) )  x.  ( X ^ K ) )  =  ( ( A `
 K )  x.  ( ( T ^ K )  x.  ( X ^ K ) ) ) )
158153, 157eqtr4d 2511 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A `  K )  x.  (
( T  x.  X
) ^ K ) )  =  ( ( ( A `  K
)  x.  ( T ^ K ) )  x.  ( X ^ K ) ) )
1597oveq1i 6292 . . . . . . . . . . . . . . . 16  |-  ( T ^ K )  =  ( ( -u (
( F `  0
)  /  ( A `
 K ) )  ^c  ( 1  /  K ) ) ^ K )
16058recnd 9618 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  K  e.  CC )
16126nnne0d 10576 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  K  =/=  0 )
162160, 161recid2d 10312 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1  /  K )  x.  K
)  =  1 )
163162oveq2d 6298 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  ( ( 1  /  K )  x.  K ) )  =  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  1 ) )
16425simprd 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( A `  K
)  =/=  0 )
16523, 154, 164divcld 10316 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( F ` 
0 )  /  ( A `  K )
)  e.  CC )
166165negcld 9913 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
-u ( ( F `
 0 )  / 
( A `  K
) )  e.  CC )
16726nnrecred 10577 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 1  /  K
)  e.  RR )
168167recnd 9618 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1  /  K
)  e.  CC )
169166, 168, 27cxpmul2d 22818 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  ( ( 1  /  K )  x.  K ) )  =  ( ( -u (
( F `  0
)  /  ( A `
 K ) )  ^c  ( 1  /  K ) ) ^ K ) )
170166cxp1d 22815 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^c  1 )  = 
-u ( ( F `
 0 )  / 
( A `  K
) ) )
171163, 169, 1703eqtr3d 2516 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( -u (
( F `  0
)  /  ( A `
 K ) )  ^c  ( 1  /  K ) ) ^ K )  = 
-u ( ( F `
 0 )  / 
( A `  K
) ) )
172159, 171syl5eq 2520 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T ^ K
)  =  -u (
( F `  0
)  /  ( A `
 K ) ) )
173172oveq2d 6298 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A `  K )  x.  ( T ^ K ) )  =  ( ( A `
 K )  x.  -u ( ( F ` 
0 )  /  ( A `  K )
) ) )
174154, 165mulneg2d 10006 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A `  K )  x.  -u (
( F `  0
)  /  ( A `
 K ) ) )  =  -u (
( A `  K
)  x.  ( ( F `  0 )  /  ( A `  K ) ) ) )
17523, 154, 164divcan2d 10318 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A `  K )  x.  (
( F `  0
)  /  ( A `
 K ) ) )  =  ( F `
 0 ) )
176175negeqd 9810 . . . . . . . . . . . . . 14  |-  ( ph  -> 
-u ( ( A `
 K )  x.  ( ( F ` 
0 )  /  ( A `  K )
) )  =  -u ( F `  0 ) )
177173, 174, 1763eqtrd 2512 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A `  K )  x.  ( T ^ K ) )  =  -u ( F ` 
0 ) )
178177oveq1d 6297 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A `
 K )  x.  ( T ^ K
) )  x.  ( X ^ K ) )  =  ( -u ( F `  0 )  x.  ( X ^ K
) ) )
17923, 156mulneg1d 10005 . . . . . . . . . . . 12  |-  ( ph  ->  ( -u ( F `
 0 )  x.  ( X ^ K
) )  =  -u ( ( F ` 
0 )  x.  ( X ^ K ) ) )
180158, 178, 1793eqtrd 2512 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A `  K )  x.  (
( T  x.  X
) ^ K ) )  =  -u (
( F `  0
)  x.  ( X ^ K ) ) )
181151, 180oveq12d 6300 . . . . . . . . . 10  |-  ( ph  ->  ( sum_ k  e.  ( 1 ... ( K  -  1 ) ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  +  ( ( A `  K )  x.  ( ( T  x.  X ) ^ K ) ) )  =  ( 0  + 
-u ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
18223, 156mulcld 9612 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F ` 
0 )  x.  ( X ^ K ) )  e.  CC )
183182negcld 9913 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( F `
 0 )  x.  ( X ^ K
) )  e.  CC )
184183addid2d 9776 . . . . . . . . . 10  |-  ( ph  ->  ( 0  +  -u ( ( F ` 
0 )  x.  ( X ^ K ) ) )  =  -u (
( F `  0
)  x.  ( X ^ K ) ) )
185118, 181, 1843eqtrd 2512 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  -u (
( F `  0
)  x.  ( X ^ K ) ) )
186104, 185oveq12d 6300 . . . . . . . 8  |-  ( ph  ->  ( ( ( A `
 0 )  x.  ( ( T  x.  X ) ^ 0 ) )  +  sum_ k  e.  ( (
0  +  1 ) ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  =  ( ( F `  0 )  +  -u ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
187 fveq2 5864 . . . . . . . . . 10  |-  ( k  =  0  ->  ( A `  k )  =  ( A ` 
0 ) )
188 oveq2 6290 . . . . . . . . . 10  |-  ( k  =  0  ->  (
( T  x.  X
) ^ k )  =  ( ( T  x.  X ) ^
0 ) )
189187, 188oveq12d 6300 . . . . . . . . 9  |-  ( k  =  0  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  ( ( A `
 0 )  x.  ( ( T  x.  X ) ^ 0 ) ) )
19083, 53, 189fsum1p 13527 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 0 ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  ( ( ( A `  0
)  x.  ( ( T  x.  X ) ^ 0 ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )
191103oveq1d 6297 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F `
 0 )  x.  1 )  -  (
( F `  0
)  x.  ( X ^ K ) ) )  =  ( ( F `  0 )  -  ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
192 1cnd 9608 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
19323, 192, 156subdid 10008 . . . . . . . . 9  |-  ( ph  ->  ( ( F ` 
0 )  x.  (
1  -  ( X ^ K ) ) )  =  ( ( ( F `  0
)  x.  1 )  -  ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
19423, 182negsubd 9932 . . . . . . . . 9  |-  ( ph  ->  ( ( F ` 
0 )  +  -u ( ( F ` 
0 )  x.  ( X ^ K ) ) )  =  ( ( F `  0 )  -  ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
195191, 193, 1943eqtr4d 2518 . . . . . . . 8  |-  ( ph  ->  ( ( F ` 
0 )  x.  (
1  -  ( X ^ K ) ) )  =  ( ( F `  0 )  +  -u ( ( F `
 0 )  x.  ( X ^ K
) ) ) )
196186, 190, 1953eqtr4d 2518 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... K ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) )  =  ( ( F `  0 )  x.  ( 1  -  ( X ^ K
) ) ) )
197196fveq2d 5868 . . . . . 6  |-  ( ph  ->  ( abs `  sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  =  ( abs `  ( ( F ` 
0 )  x.  (
1  -  ( X ^ K ) ) ) ) )
198 1re 9591 . . . . . . . . 9  |-  1  e.  RR
199 resubcl 9879 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( X ^ K )  e.  RR )  -> 
( 1  -  ( X ^ K ) )  e.  RR )
200198, 28, 199sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( 1  -  ( X ^ K ) )  e.  RR )
201200recnd 9618 . . . . . . 7  |-  ( ph  ->  ( 1  -  ( X ^ K ) )  e.  CC )
20223, 201absmuld 13244 . . . . . 6  |-  ( ph  ->  ( abs `  (
( F `  0
)  x.  ( 1  -  ( X ^ K ) ) ) )  =  ( ( abs `  ( F `
 0 ) )  x.  ( abs `  (
1  -  ( X ^ K ) ) ) ) )
20313rpge0d 11256 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  X )
20411simp2d 1009 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e.  RR+ )
205204rpred 11252 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  RR )
206 min1 11385 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  U  e.  RR )  ->  if ( 1  <_  U ,  1 ,  U )  <_  1
)
207198, 205, 206sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  if ( 1  <_  U ,  1 ,  U )  <_  1
)
2089, 207syl5eqbr 4480 . . . . . . . . . . 11  |-  ( ph  ->  X  <_  1 )
209 exple1 12189 . . . . . . . . . . 11  |-  ( ( ( X  e.  RR  /\  0  <_  X  /\  X  <_  1 )  /\  K  e.  NN0 )  -> 
( X ^ K
)  <_  1 )
21014, 203, 208, 27, 209syl31anc 1231 . . . . . . . . . 10  |-  ( ph  ->  ( X ^ K
)  <_  1 )
211 subge0 10061 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( X ^ K )  e.  RR )  -> 
( 0  <_  (
1  -  ( X ^ K ) )  <-> 
( X ^ K
)  <_  1 ) )
212198, 28, 211sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <_  (
1  -  ( X ^ K ) )  <-> 
( X ^ K
)  <_  1 ) )
213210, 212mpbird 232 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( 1  -  ( X ^ K ) ) )
214200, 213absidd 13213 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
1  -  ( X ^ K ) ) )  =  ( 1  -  ( X ^ K ) ) )
215214oveq2d 6298 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  x.  ( abs `  ( 1  -  ( X ^ K ) ) ) )  =  ( ( abs `  ( F `  0 )
)  x.  ( 1  -  ( X ^ K ) ) ) )
21624recnd 9618 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( F `  0 )
)  e.  CC )
217216, 192, 156subdid 10008 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  x.  ( 1  -  ( X ^ K ) ) )  =  ( ( ( abs `  ( F `
 0 ) )  x.  1 )  -  ( ( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) ) )
218216mulid1d 9609 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  x.  1 )  =  ( abs `  ( F `  0 )
) )
219218oveq1d 6297 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  ( F `  0
) )  x.  1 )  -  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )  =  ( ( abs `  ( F `  0
) )  -  (
( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) ) )
220215, 217, 2193eqtrd 2512 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  x.  ( abs `  ( 1  -  ( X ^ K ) ) ) )  =  ( ( abs `  ( F `  0 )
)  -  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) ) )
221197, 202, 2203eqtrrd 2513 . . . . 5  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  -  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )  =  ( abs `  sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) ) )
222221oveq1d 6297 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( F `  0
) )  -  (
( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )  =  ( ( abs `  sum_ k  e.  ( 0 ... K ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) ) )
22355, 97, 2223brtr4d 4477 . . 3  |-  ( ph  ->  ( abs `  ( F `  ( T  x.  X ) ) )  <_  ( ( ( abs `  ( F `
 0 ) )  -  ( ( abs `  ( F `  0
) )  x.  ( X ^ K ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) ) )
22444abscld 13226 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) ) )  e.  RR )
22531, 224fsumrecl 13515 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  e.  RR )
22631, 44fsumabs 13574 . . . . . 6  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  <_  sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) ) )
227 expcl 12148 . . . . . . . . . . . . 13  |-  ( ( T  e.  CC  /\  k  e.  NN0 )  -> 
( T ^ k
)  e.  CC )
22812, 227sylan 471 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( T ^ k )  e.  CC )
22936, 228syldan 470 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( T ^ k )  e.  CC )
23041, 229mulcld 9612 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( A `  k
)  x.  ( T ^ k ) )  e.  CC )
231230abscld 13226 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( T ^ k
) ) )  e.  RR )
23231, 231fsumrecl 13515 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  e.  RR )
23314, 33reexpcld 12291 . . . . . . . 8  |-  ( ph  ->  ( X ^ ( K  +  1 ) )  e.  RR )
234232, 233remulcld 9620 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  e.  RR )
235233adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( X ^ ( K  + 
1 ) )  e.  RR )
236231, 235remulcld 9620 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  e.  RR )
23712adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  T  e.  CC )
23815adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  X  e.  CC )
239237, 238, 36mulexpd 12289 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( T  x.  X
) ^ k )  =  ( ( T ^ k )  x.  ( X ^ k
) ) )
240239oveq2d 6298 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  ( ( A `
 k )  x.  ( ( T ^
k )  x.  ( X ^ k ) ) ) )
24114adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  X  e.  RR )
242241, 36reexpcld 12291 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( X ^ k )  e.  RR )
243242recnd 9618 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( X ^ k )  e.  CC )
24441, 229, 243mulassd 9615 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( ( A `  k )  x.  ( T ^ k ) )  x.  ( X ^
k ) )  =  ( ( A `  k )  x.  (
( T ^ k
)  x.  ( X ^ k ) ) ) )
245240, 244eqtr4d 2511 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) )  =  ( ( ( A `  k )  x.  ( T ^
k ) )  x.  ( X ^ k
) ) )
246245fveq2d 5868 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) ) )  =  ( abs `  (
( ( A `  k )  x.  ( T ^ k ) )  x.  ( X ^
k ) ) ) )
247230, 243absmuld 13244 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( ( A `  k )  x.  ( T ^
k ) )  x.  ( X ^ k
) ) )  =  ( ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( abs `  ( X ^ k
) ) ) )
248 elfzelz 11684 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( K  +  1 ) ... N )  ->  k  e.  ZZ )
249 rpexpcl 12149 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  RR+  /\  k  e.  ZZ )  ->  ( X ^ k )  e.  RR+ )
25013, 248, 249syl2an 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( X ^ k )  e.  RR+ )
251250rpge0d 11256 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( X ^ k
) )
252242, 251absidd 13213 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( X ^
k ) )  =  ( X ^ k
) )
253252oveq2d 6298 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( abs `  ( X ^ k
) ) )  =  ( ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ k ) ) )
254246, 247, 2533eqtrd 2512 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) ) )  =  ( ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ k ) ) )
255230absge0d 13234 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) ) )
25633adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( K  +  1 )  e.  NN0 )
25734adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  k  e.  ( ZZ>= `  ( K  +  1 ) ) )
258203adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  X )
259208adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  X  <_  1 )
260241, 256, 257, 258, 259leexp2rd 12307 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( X ^ k )  <_ 
( X ^ ( K  +  1 ) ) )
261242, 235, 231, 255, 260lemul2ad 10482 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ k ) )  <_  ( ( abs `  ( ( A `  k )  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) ) )
262254, 261eqbrtrd 4467 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( ( T  x.  X ) ^ k
) ) )  <_ 
( ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) ) )
26331, 224, 236, 262fsumle 13572 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  <_  sum_ k  e.  ( ( K  + 
1 ) ... N
) ( ( abs `  ( ( A `  k )  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) ) )
264233recnd 9618 . . . . . . . . 9  |-  ( ph  ->  ( X ^ ( K  +  1 ) )  e.  CC )
265231recnd 9618 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( T ^ k
) ) )  e.  CC )
26631, 264, 265fsummulc1 13559 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  =  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) ) )
267263, 266breqtrrd 4473 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  <_  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  x.  ( X ^
( K  +  1 ) ) ) )
26815, 27expp1d 12275 . . . . . . . . . . 11  |-  ( ph  ->  ( X ^ ( K  +  1 ) )  =  ( ( X ^ K )  x.  X ) )
269156, 15mulcomd 9613 . . . . . . . . . . 11  |-  ( ph  ->  ( ( X ^ K )  x.  X
)  =  ( X  x.  ( X ^ K ) ) )
270268, 269eqtrd 2508 . . . . . . . . . 10  |-  ( ph  ->  ( X ^ ( K  +  1 ) )  =  ( X  x.  ( X ^ K ) ) )
271270oveq2d 6298 . . . . . . . . 9  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  =  ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X  x.  ( X ^ K ) ) ) )
272232recnd 9618 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  e.  CC )
273272, 15, 156mulassd 9615 . . . . . . . . 9  |-  ( ph  ->  ( ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  X )  x.  ( X ^ K ) )  =  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X  x.  ( X ^ K ) ) ) )
274271, 273eqtr4d 2511 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  =  ( ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  x.  X )  x.  ( X ^ K
) ) )
275232, 14remulcld 9620 . . . . . . . . 9  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  X )  e.  RR )
276 nnssz 10880 . . . . . . . . . . . 12  |-  NN  C_  ZZ
27762, 276sstri 3513 . . . . . . . . . . 11  |-  { n  e.  NN  |  ( A `
 n )  =/=  0 }  C_  ZZ
278 ne0i 3791 . . . . . . . . . . . . . 14  |-  ( N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  ->  { n  e.  NN  |  ( A `
 n )  =/=  0 }  =/=  (/) )
27978, 278syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  { n  e.  NN  |  ( A `  n )  =/=  0 }  =/=  (/) )
280 infmssuzcl 11161 . . . . . . . . . . . . 13  |-  ( ( { n  e.  NN  |  ( A `  n )  =/=  0 }  C_  ( ZZ>= `  1
)  /\  { n  e.  NN  |  ( A `
 n )  =/=  0 }  =/=  (/) )  ->  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  ( A `  n )  =/=  0 } )
28164, 279, 280sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  ( A `  n )  =/=  0 } )
2826, 281syl5eqel 2559 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } )
283277, 282sseldi 3502 . . . . . . . . . 10  |-  ( ph  ->  K  e.  ZZ )
28413, 283rpexpcld 12297 . . . . . . . . 9  |-  ( ph  ->  ( X ^ K
)  e.  RR+ )
285 peano2re 9748 . . . . . . . . . . . 12  |-  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  e.  RR  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 )  e.  RR )
286232, 285syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  e.  RR )
287286, 14remulcld 9620 . . . . . . . . . 10  |-  ( ph  ->  ( ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  x.  X )  e.  RR )
288232ltp1d 10472 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  <  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
289232, 286, 13, 288ltmul1dd 11303 . . . . . . . . . 10  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  X )  <  ( ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 )  x.  X ) )
290 min2 11386 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  U  e.  RR )  ->  if ( 1  <_  U ,  1 ,  U )  <_  U
)
291198, 205, 290sylancr 663 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( 1  <_  U ,  1 ,  U )  <_  U
)
2929, 291syl5eqbr 4480 . . . . . . . . . . . 12  |-  ( ph  ->  X  <_  U )
293292, 8syl6breq 4486 . . . . . . . . . . 11  |-  ( ph  ->  X  <_  ( ( abs `  ( F ` 
0 ) )  / 
( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 ) ) )
294 0red 9593 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  RR )
29531, 231, 255fsumge0 13568 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <_  sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) ) )
296294, 232, 286, 295, 288lelttrd 9735 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
297 lemuldiv2 10421 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  ( abs `  ( F `
 0 ) )  e.  RR  /\  (
( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  e.  RR  /\  0  <  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 ) ) )  ->  (
( ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  x.  X )  <_ 
( abs `  ( F `  0 )
)  <->  X  <_  ( ( abs `  ( F `
 0 ) )  /  ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 ) ) ) )
29814, 24, 286, 296, 297syl112anc 1232 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 )  x.  X )  <_  ( abs `  ( F ` 
0 ) )  <->  X  <_  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) ) ) )
299293, 298mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  ( ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  x.  X )  <_ 
( abs `  ( F `  0 )
) )
300275, 287, 24, 289, 299ltletrd 9737 . . . . . . . . 9  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  X )  <  ( abs `  ( F `  0 )
) )
301275, 24, 284, 300ltmul1dd 11303 . . . . . . . 8  |-  ( ph  ->  ( ( sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  X )  x.  ( X ^ K ) )  < 
( ( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) )
302274, 301eqbrtrd 4467 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  x.  ( X ^ ( K  + 
1 ) ) )  <  ( ( abs `  ( F `  0
) )  x.  ( X ^ K ) ) )
303225, 234, 29, 267, 302lelttrd 9735 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  <  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )
30446, 225, 29, 226, 303lelttrd 9735 . . . . 5  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) )  <  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )
30546, 29, 24, 304ltsub2dd 10161 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  -  ( ( abs `  ( F `
 0 ) )  x.  ( X ^ K ) ) )  <  ( ( abs `  ( F `  0
) )  -  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) ) )
30630, 46, 24ltaddsubd 10148 . . . 4  |-  ( ph  ->  ( ( ( ( abs `  ( F `
 0 ) )  -  ( ( abs `  ( F `  0
) )  x.  ( X ^ K ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )  < 
( abs `  ( F `  0 )
)  <->  ( ( abs `  ( F `  0
) )  -  (
( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) )  <  ( ( abs `  ( F `
 0 ) )  -  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k
)  x.  ( ( T  x.  X ) ^ k ) ) ) ) ) )
307305, 306mpbird 232 . . 3  |-  ( ph  ->  ( ( ( abs `  ( F `  0
) )  -  (
( abs `  ( F `  0 )
)  x.  ( X ^ K ) ) )  +  ( abs `  sum_ k  e.  ( ( K  +  1 ) ... N ) ( ( A `  k )  x.  (
( T  x.  X
) ^ k ) ) ) )  < 
( abs `  ( F `  0 )
) )
30820, 47, 24, 223, 307lelttrd 9735 . 2  |-  ( ph  ->  ( abs `  ( F `  ( T  x.  X ) ) )  <  ( abs `  ( F `  0 )
) )
309 fveq2 5864 . . . . 5  |-  ( x  =  ( T  x.  X )  ->  ( F `  x )  =  ( F `  ( T  x.  X
) ) )
310309fveq2d 5868 . . . 4  |-  ( x  =  ( T  x.  X )  ->  ( abs `  ( F `  x ) )  =  ( abs `  ( F `  ( T  x.  X ) ) ) )
311310breq1d 4457 . . 3  |-  ( x  =  ( T  x.  X )  ->  (
( abs `  ( F `  x )
)  <  ( abs `  ( F `  0
) )  <->  ( abs `  ( F `  ( T  x.  X )
) )  <  ( abs `  ( F ` 
0 ) ) ) )
312311rspcev 3214 . 2  |-  ( ( ( T  x.  X
)  e.  CC  /\  ( abs `  ( F `
 ( T  x.  X ) ) )  <  ( abs `  ( F `  0 )
) )  ->  E. x  e.  CC  ( abs `  ( F `  x )
)  <  ( abs `  ( F `  0
) ) )
31316, 308, 312syl2anc 661 1  |-  ( ph  ->  E. x  e.  CC  ( abs `  ( F `
 x ) )  <  ( abs `  ( F `  0 )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815   {crab 2818    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   ifcif 3939   class class class wbr 4447   `'ccnv 4998   -->wf 5582   ` cfv 5586  (class class class)co 6282   Fincfn 7513   supcsup 7896   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801   -ucneg 9802    / cdiv 10202   NNcn 10532   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   RR+crp 11216   ...cfz 11668   ^cexp 12130   abscabs 13026   sum_csu 13467   0pc0p 21811  Polycply 22316  coeffccoe 22318  degcdgr 22319    ^c ccxp 22671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664  df-pi 13666  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-0p 21812  df-limc 22005  df-dv 22006  df-ply 22320  df-coe 22322  df-dgr 22323  df-log 22672  df-cxp 22673
This theorem is referenced by:  ftalem6  23079
  Copyright terms: Public domain W3C validator