MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem2 Structured version   Unicode version

Theorem ftalem2 23940
Description: Lemma for fta 23948. There exists some  r such that  F has magnitude greater than  F ( 0 ) outside the closed ball B(0,r). (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1  |-  A  =  (coeff `  F )
ftalem.2  |-  N  =  (deg `  F )
ftalem.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
ftalem.4  |-  ( ph  ->  N  e.  NN )
ftalem2.5  |-  U  =  if ( if ( 1  <_  s , 
s ,  1 )  <_  T ,  T ,  if ( 1  <_ 
s ,  s ,  1 ) )
ftalem2.6  |-  T  =  ( ( abs `  ( F `  0 )
)  /  ( ( abs `  ( A `
 N ) )  /  2 ) )
Assertion
Ref Expression
ftalem2  |-  ( ph  ->  E. r  e.  RR+  A. x  e.  CC  (
r  <  ( abs `  x )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) ) )
Distinct variable groups:    s, r, x, A    N, r, s, x    F, r, s, x    ph, s, x    S, s    T, r, x    U, r, x
Allowed substitution hints:    ph( r)    S( x, r)    T( s)    U( s)

Proof of Theorem ftalem2
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftalem.1 . . 3  |-  A  =  (coeff `  F )
2 ftalem.2 . . 3  |-  N  =  (deg `  F )
3 ftalem.3 . . 3  |-  ( ph  ->  F  e.  (Poly `  S ) )
4 ftalem.4 . . 3  |-  ( ph  ->  N  e.  NN )
51coef3 23128 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
63, 5syl 17 . . . . . 6  |-  ( ph  ->  A : NN0 --> CC )
74nnnn0d 10876 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
86, 7ffvelrnd 5982 . . . . 5  |-  ( ph  ->  ( A `  N
)  e.  CC )
94nnne0d 10605 . . . . . 6  |-  ( ph  ->  N  =/=  0 )
102, 1dgreq0 23161 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0p  <->  ( A `  N )  =  0 ) )
11 fveq2 5825 . . . . . . . . . . 11  |-  ( F  =  0p  -> 
(deg `  F )  =  (deg `  0p
) )
12 dgr0 23158 . . . . . . . . . . 11  |-  (deg ` 
0p )  =  0
1311, 12syl6eq 2478 . . . . . . . . . 10  |-  ( F  =  0p  -> 
(deg `  F )  =  0 )
142, 13syl5eq 2474 . . . . . . . . 9  |-  ( F  =  0p  ->  N  =  0 )
1510, 14syl6bir 232 . . . . . . . 8  |-  ( F  e.  (Poly `  S
)  ->  ( ( A `  N )  =  0  ->  N  =  0 ) )
163, 15syl 17 . . . . . . 7  |-  ( ph  ->  ( ( A `  N )  =  0  ->  N  =  0 ) )
1716necon3d 2622 . . . . . 6  |-  ( ph  ->  ( N  =/=  0  ->  ( A `  N
)  =/=  0 ) )
189, 17mpd 15 . . . . 5  |-  ( ph  ->  ( A `  N
)  =/=  0 )
198, 18absrpcld 13453 . . . 4  |-  ( ph  ->  ( abs `  ( A `  N )
)  e.  RR+ )
2019rphalfcld 11304 . . 3  |-  ( ph  ->  ( ( abs `  ( A `  N )
)  /  2 )  e.  RR+ )
21 fveq2 5825 . . . . . 6  |-  ( n  =  k  ->  ( A `  n )  =  ( A `  k ) )
2221fveq2d 5829 . . . . 5  |-  ( n  =  k  ->  ( abs `  ( A `  n ) )  =  ( abs `  ( A `  k )
) )
2322cbvsumv 13705 . . . 4  |-  sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  n )
)  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)
2423oveq1i 6259 . . 3  |-  ( sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  n
) )  /  (
( abs `  ( A `  N )
)  /  2 ) )  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( A `
 k ) )  /  ( ( abs `  ( A `  N
) )  /  2
) )
251, 2, 3, 4, 20, 24ftalem1 23939 . 2  |-  ( ph  ->  E. s  e.  RR  A. x  e.  CC  (
s  <  ( abs `  x )  ->  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) )  < 
( ( ( abs `  ( A `  N
) )  /  2
)  x.  ( ( abs `  x ) ^ N ) ) ) )
26 ftalem2.5 . . . . . 6  |-  U  =  if ( if ( 1  <_  s , 
s ,  1 )  <_  T ,  T ,  if ( 1  <_ 
s ,  s ,  1 ) )
27 ftalem2.6 . . . . . . . . 9  |-  T  =  ( ( abs `  ( F `  0 )
)  /  ( ( abs `  ( A `
 N ) )  /  2 ) )
28 plyf 23094 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
293, 28syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  F : CC --> CC )
30 0cn 9586 . . . . . . . . . . . 12  |-  0  e.  CC
31 ffvelrn 5979 . . . . . . . . . . . 12  |-  ( ( F : CC --> CC  /\  0  e.  CC )  ->  ( F `  0
)  e.  CC )
3229, 30, 31sylancl 666 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  0
)  e.  CC )
3332abscld 13441 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( F `  0 )
)  e.  RR )
3433, 20rerpdivcld 11320 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  /  ( ( abs `  ( A `
 N ) )  /  2 ) )  e.  RR )
3527, 34syl5eqel 2510 . . . . . . . 8  |-  ( ph  ->  T  e.  RR )
3635adantr 466 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR )  ->  T  e.  RR )
37 simpr 462 . . . . . . . 8  |-  ( (
ph  /\  s  e.  RR )  ->  s  e.  RR )
38 1re 9593 . . . . . . . 8  |-  1  e.  RR
39 ifcl 3896 . . . . . . . 8  |-  ( ( s  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_ 
s ,  s ,  1 )  e.  RR )
4037, 38, 39sylancl 666 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR )  ->  if ( 1  <_  s , 
s ,  1 )  e.  RR )
4136, 40ifcld 3897 . . . . . 6  |-  ( (
ph  /\  s  e.  RR )  ->  if ( if ( 1  <_ 
s ,  s ,  1 )  <_  T ,  T ,  if ( 1  <_  s , 
s ,  1 ) )  e.  RR )
4226, 41syl5eqel 2510 . . . . 5  |-  ( (
ph  /\  s  e.  RR )  ->  U  e.  RR )
43 0red 9595 . . . . . 6  |-  ( (
ph  /\  s  e.  RR )  ->  0  e.  RR )
44 1red 9609 . . . . . 6  |-  ( (
ph  /\  s  e.  RR )  ->  1  e.  RR )
45 0lt1 10087 . . . . . . 7  |-  0  <  1
4645a1i 11 . . . . . 6  |-  ( (
ph  /\  s  e.  RR )  ->  0  <  1 )
47 max1 11431 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  s  e.  RR )  ->  1  <_  if (
1  <_  s , 
s ,  1 ) )
4838, 37, 47sylancr 667 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR )  ->  1  <_  if ( 1  <_  s ,  s ,  1 ) )
49 max1 11431 . . . . . . . . 9  |-  ( ( if ( 1  <_ 
s ,  s ,  1 )  e.  RR  /\  T  e.  RR )  ->  if ( 1  <_  s ,  s ,  1 )  <_  if ( if ( 1  <_  s ,  s ,  1 )  <_  T ,  T ,  if ( 1  <_  s ,  s ,  1 ) ) )
5040, 36, 49syl2anc 665 . . . . . . . 8  |-  ( (
ph  /\  s  e.  RR )  ->  if ( 1  <_  s , 
s ,  1 )  <_  if ( if ( 1  <_  s ,  s ,  1 )  <_  T ,  T ,  if (
1  <_  s , 
s ,  1 ) ) )
5150, 26syl6breqr 4407 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR )  ->  if ( 1  <_  s , 
s ,  1 )  <_  U )
5244, 40, 42, 48, 51letrd 9743 . . . . . 6  |-  ( (
ph  /\  s  e.  RR )  ->  1  <_  U )
5343, 44, 42, 46, 52ltletrd 9746 . . . . 5  |-  ( (
ph  /\  s  e.  RR )  ->  0  < 
U )
5442, 53elrpd 11289 . . . 4  |-  ( (
ph  /\  s  e.  RR )  ->  U  e.  RR+ )
55 max2 11433 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  s  e.  RR )  ->  s  <_  if (
1  <_  s , 
s ,  1 ) )
5638, 37, 55sylancr 667 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR )  ->  s  <_  if ( 1  <_  s ,  s ,  1 ) )
5737, 40, 42, 56, 51letrd 9743 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR )  ->  s  <_  U )
5857adantr 466 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR )  /\  x  e.  CC )  ->  s  <_  U )
5937adantr 466 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR )  /\  x  e.  CC )  ->  s  e.  RR )
6042adantr 466 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR )  /\  x  e.  CC )  ->  U  e.  RR )
61 abscl 13285 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
6261adantl 467 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR )  /\  x  e.  CC )  ->  ( abs `  x )  e.  RR )
63 lelttr 9675 . . . . . . . . 9  |-  ( ( s  e.  RR  /\  U  e.  RR  /\  ( abs `  x )  e.  RR )  ->  (
( s  <_  U  /\  U  <  ( abs `  x ) )  -> 
s  <  ( abs `  x ) ) )
6459, 60, 62, 63syl3anc 1264 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR )  /\  x  e.  CC )  ->  (
( s  <_  U  /\  U  <  ( abs `  x ) )  -> 
s  <  ( abs `  x ) ) )
6558, 64mpand 679 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  RR )  /\  x  e.  CC )  ->  ( U  <  ( abs `  x
)  ->  s  <  ( abs `  x ) ) )
6665imim1d 78 . . . . . 6  |-  ( ( ( ph  /\  s  e.  RR )  /\  x  e.  CC )  ->  (
( s  <  ( abs `  x )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( ( ( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) ) )  -> 
( U  <  ( abs `  x )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( ( ( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) ) ) ) )
6729ad2antrr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  ->  F : CC --> CC )
68 simprl 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  ->  x  e.  CC )
6967, 68ffvelrnd 5982 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( F `  x
)  e.  CC )
708ad2antrr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( A `  N
)  e.  CC )
717ad2antrr 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  ->  N  e.  NN0 )
7268, 71expcld 12366 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( x ^ N
)  e.  CC )
7370, 72mulcld 9614 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( A `  N )  x.  (
x ^ N ) )  e.  CC )
7469, 73subcld 9937 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) )  e.  CC )
7574abscld 13441 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  e.  RR )
7673abscld 13441 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  e.  RR )
7776rehalfcld 10810 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  e.  RR )
7875, 77, 76ltsub2d 10174 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  /  2 )  <->  ( ( abs `  ( ( A `
 N )  x.  ( x ^ N
) ) )  -  ( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 ) )  <  ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  -  ( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) ) ) ) )
7970, 72absmuld 13459 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  =  ( ( abs `  ( A `
 N ) )  x.  ( abs `  (
x ^ N ) ) ) )
8068, 71absexpd 13457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  (
x ^ N ) )  =  ( ( abs `  x ) ^ N ) )
8180oveq2d 6265 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  ( A `  N )
)  x.  ( abs `  ( x ^ N
) ) )  =  ( ( abs `  ( A `  N )
)  x.  ( ( abs `  x ) ^ N ) ) )
8279, 81eqtrd 2462 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  =  ( ( abs `  ( A `
 N ) )  x.  ( ( abs `  x ) ^ N
) ) )
8382oveq1d 6264 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  =  ( ( ( abs `  ( A `
 N ) )  x.  ( ( abs `  x ) ^ N
) )  /  2
) )
8470abscld 13441 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  ( A `  N )
)  e.  RR )
8584recnd 9620 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  ( A `  N )
)  e.  CC )
8662adantrr 721 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  x
)  e.  RR )
8786, 71reexpcld 12383 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ N )  e.  RR )
8887recnd 9620 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ N )  e.  CC )
89 2cnd 10633 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
2  e.  CC )
90 2ne0 10653 . . . . . . . . . . . . . . 15  |-  2  =/=  0
9190a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
2  =/=  0 )
9285, 88, 89, 91div23d 10371 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( abs `  ( A `  N
) )  x.  (
( abs `  x
) ^ N ) )  /  2 )  =  ( ( ( abs `  ( A `
 N ) )  /  2 )  x.  ( ( abs `  x
) ^ N ) ) )
9383, 92eqtrd 2462 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  =  ( ( ( abs `  ( A `
 N ) )  /  2 )  x.  ( ( abs `  x
) ^ N ) ) )
9493breq2d 4378 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  /  2 )  <->  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) )  <  (
( ( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) ) ) )
9576recnd 9620 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  e.  CC )
96952halvesd 10809 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( abs `  ( ( A `  N )  x.  (
x ^ N ) ) )  /  2
)  +  ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  /  2 ) )  =  ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) ) )
9796oveq1d 6264 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  /  2 )  +  ( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 ) )  -  ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  /  2 ) )  =  ( ( abs `  ( ( A `  N )  x.  (
x ^ N ) ) )  -  (
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 ) ) )
9877recnd 9620 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  e.  CC )
9998, 98pncand 9938 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  /  2 )  +  ( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 ) )  -  ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  /  2 ) )  =  ( ( abs `  ( ( A `  N )  x.  (
x ^ N ) ) )  /  2
) )
10097, 99eqtr3d 2464 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  /  2 ) )  =  ( ( abs `  ( ( A `  N )  x.  (
x ^ N ) ) )  /  2
) )
101100breq1d 4376 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( abs `  ( ( A `  N )  x.  (
x ^ N ) ) )  -  (
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 ) )  <  ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  -  ( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) ) )  <->  ( ( abs `  ( ( A `
 N )  x.  ( x ^ N
) ) )  / 
2 )  <  (
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) ) ) ) )
10278, 94, 1013bitr3d 286 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( ( ( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) )  <->  ( ( abs `  ( ( A `
 N )  x.  ( x ^ N
) ) )  / 
2 )  <  (
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) ) ) ) )
10373, 69subcld 9937 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( A `
 N )  x.  ( x ^ N
) )  -  ( F `  x )
)  e.  CC )
10473, 103abs2difd 13462 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( abs `  ( ( ( A `
 N )  x.  ( x ^ N
) )  -  ( F `  x )
) ) )  <_ 
( abs `  (
( ( A `  N )  x.  (
x ^ N ) )  -  ( ( ( A `  N
)  x.  ( x ^ N ) )  -  ( F `  x ) ) ) ) )
10573, 69abssubd 13458 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  (
( ( A `  N )  x.  (
x ^ N ) )  -  ( F `
 x ) ) )  =  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) ) )
106105oveq2d 6265 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( abs `  ( ( ( A `
 N )  x.  ( x ^ N
) )  -  ( F `  x )
) ) )  =  ( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) ) ) )
10773, 69nncand 9942 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( A `
 N )  x.  ( x ^ N
) )  -  (
( ( A `  N )  x.  (
x ^ N ) )  -  ( F `
 x ) ) )  =  ( F `
 x ) )
108107fveq2d 5829 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  (
( ( A `  N )  x.  (
x ^ N ) )  -  ( ( ( A `  N
)  x.  ( x ^ N ) )  -  ( F `  x ) ) ) )  =  ( abs `  ( F `  x
) ) )
109104, 106, 1083brtr3d 4396 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) ) )  <_ 
( abs `  ( F `  x )
) )
11076, 75resubcld 9998 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) ) )  e.  RR )
11169abscld 13441 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  ( F `  x )
)  e.  RR )
112 ltletr 9676 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  e.  RR  /\  (
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) ) )  e.  RR  /\  ( abs `  ( F `  x
) )  e.  RR )  ->  ( ( ( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  <  ( ( abs `  ( ( A `  N )  x.  (
x ^ N ) ) )  -  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) ) )  /\  ( ( abs `  ( ( A `  N )  x.  (
x ^ N ) ) )  -  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) ) )  <_  ( abs `  ( F `  x )
) )  ->  (
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  <  ( abs `  ( F `  x )
) ) )
11377, 110, 111, 112syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( ( abs `  ( ( A `  N )  x.  ( x ^ N ) ) )  /  2 )  < 
( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) ) )  /\  ( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  -  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) ) )  <_ 
( abs `  ( F `  x )
) )  ->  (
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  <  ( abs `  ( F `  x )
) ) )
114109, 113mpan2d 678 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( abs `  ( ( A `  N )  x.  (
x ^ N ) ) )  /  2
)  <  ( ( abs `  ( ( A `
 N )  x.  ( x ^ N
) ) )  -  ( abs `  ( ( F `  x )  -  ( ( A `
 N )  x.  ( x ^ N
) ) ) ) )  ->  ( ( abs `  ( ( A `
 N )  x.  ( x ^ N
) ) )  / 
2 )  <  ( abs `  ( F `  x ) ) ) )
115102, 114sylbid 218 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( ( ( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) )  ->  (
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  <  ( abs `  ( F `  x )
) ) )
11633ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  ( F `  0 )
)  e.  RR )
11720ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  ( A `  N )
)  /  2 )  e.  RR+ )
118117rpred 11292 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  ( A `  N )
)  /  2 )  e.  RR )
119118, 86remulcld 9622 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( abs `  ( A `  N
) )  /  2
)  x.  ( abs `  x ) )  e.  RR )
12093, 77eqeltrrd 2507 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( abs `  ( A `  N
) )  /  2
)  x.  ( ( abs `  x ) ^ N ) )  e.  RR )
12136adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  ->  T  e.  RR )
12242adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  ->  U  e.  RR )
123 max2 11433 . . . . . . . . . . . . . . . . . 18  |-  ( ( if ( 1  <_ 
s ,  s ,  1 )  e.  RR  /\  T  e.  RR )  ->  T  <_  if ( if ( 1  <_ 
s ,  s ,  1 )  <_  T ,  T ,  if ( 1  <_  s , 
s ,  1 ) ) )
12440, 36, 123syl2anc 665 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  RR )  ->  T  <_  if ( if ( 1  <_  s ,  s ,  1 )  <_  T ,  T ,  if ( 1  <_  s ,  s ,  1 ) ) )
125124, 26syl6breqr 4407 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  RR )  ->  T  <_  U )
126125adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  ->  T  <_  U )
127 simprr 764 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  ->  U  <  ( abs `  x
) )
128121, 122, 86, 126, 127lelttrd 9744 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  ->  T  <  ( abs `  x
) )
12927, 128syl5eqbrr 4401 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  ( F `  0 )
)  /  ( ( abs `  ( A `
 N ) )  /  2 ) )  <  ( abs `  x
) )
130116, 86, 117ltdivmuld 11340 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( abs `  ( F `  0
) )  /  (
( abs `  ( A `  N )
)  /  2 ) )  <  ( abs `  x )  <->  ( abs `  ( F `  0
) )  <  (
( ( abs `  ( A `  N )
)  /  2 )  x.  ( abs `  x
) ) ) )
131129, 130mpbid 213 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  ( F `  0 )
)  <  ( (
( abs `  ( A `  N )
)  /  2 )  x.  ( abs `  x
) ) )
13286recnd 9620 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  x
)  e.  CC )
133132exp1d 12361 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ 1 )  =  ( abs `  x
) )
134 1red 9609 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
1  e.  RR )
13552adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
1  <_  U )
136134, 122, 86, 135, 127lelttrd 9744 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
1  <  ( abs `  x ) )
137134, 86, 136ltled 9734 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
1  <_  ( abs `  x ) )
1384ad2antrr 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  ->  N  e.  NN )
139 nnuz 11145 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
140138, 139syl6eleq 2516 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  ->  N  e.  ( ZZ>= ` 
1 ) )
14186, 137, 140leexp2ad 12398 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ 1 )  <_  ( ( abs `  x ) ^ N
) )
142133, 141eqbrtrrd 4389 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  x
)  <_  ( ( abs `  x ) ^ N ) )
14386, 87, 117lemul2d 11333 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  x
)  <_  ( ( abs `  x ) ^ N )  <->  ( (
( abs `  ( A `  N )
)  /  2 )  x.  ( abs `  x
) )  <_  (
( ( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) ) ) )
144142, 143mpbid 213 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( abs `  ( A `  N
) )  /  2
)  x.  ( abs `  x ) )  <_ 
( ( ( abs `  ( A `  N
) )  /  2
)  x.  ( ( abs `  x ) ^ N ) ) )
145116, 119, 120, 131, 144ltletrd 9746 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  ( F `  0 )
)  <  ( (
( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) ) )
146145, 93breqtrrd 4393 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( abs `  ( F `  0 )
)  <  ( ( abs `  ( ( A `
 N )  x.  ( x ^ N
) ) )  / 
2 ) )
147 lttr 9661 . . . . . . . . . . 11  |-  ( ( ( abs `  ( F `  0 )
)  e.  RR  /\  ( ( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  e.  RR  /\  ( abs `  ( F `  x ) )  e.  RR )  ->  (
( ( abs `  ( F `  0 )
)  <  ( ( abs `  ( ( A `
 N )  x.  ( x ^ N
) ) )  / 
2 )  /\  (
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  <  ( abs `  ( F `  x )
) )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) ) )
148116, 77, 111, 147syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( abs `  ( F `  0
) )  <  (
( abs `  (
( A `  N
)  x.  ( x ^ N ) ) )  /  2 )  /\  ( ( abs `  ( ( A `  N )  x.  (
x ^ N ) ) )  /  2
)  <  ( abs `  ( F `  x
) ) )  -> 
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  x
) ) ) )
149146, 148mpand 679 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( ( abs `  ( ( A `  N )  x.  (
x ^ N ) ) )  /  2
)  <  ( abs `  ( F `  x
) )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) ) )
150115, 149syld 45 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR )  /\  (
x  e.  CC  /\  U  <  ( abs `  x
) ) )  -> 
( ( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( ( ( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) ) )
151150expr 618 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  RR )  /\  x  e.  CC )  ->  ( U  <  ( abs `  x
)  ->  ( ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) )  < 
( ( ( abs `  ( A `  N
) )  /  2
)  x.  ( ( abs `  x ) ^ N ) )  ->  ( abs `  ( F `  0 )
)  <  ( abs `  ( F `  x
) ) ) ) )
152151a2d 29 . . . . . 6  |-  ( ( ( ph  /\  s  e.  RR )  /\  x  e.  CC )  ->  (
( U  <  ( abs `  x )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( ( ( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) ) )  -> 
( U  <  ( abs `  x )  -> 
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  x
) ) ) ) )
15366, 152syld 45 . . . . 5  |-  ( ( ( ph  /\  s  e.  RR )  /\  x  e.  CC )  ->  (
( s  <  ( abs `  x )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( ( ( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) ) )  -> 
( U  <  ( abs `  x )  -> 
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  x
) ) ) ) )
154153ralimdva 2773 . . . 4  |-  ( (
ph  /\  s  e.  RR )  ->  ( A. x  e.  CC  (
s  <  ( abs `  x )  ->  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) )  < 
( ( ( abs `  ( A `  N
) )  /  2
)  x.  ( ( abs `  x ) ^ N ) ) )  ->  A. x  e.  CC  ( U  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) ) )
155 breq1 4369 . . . . . . 7  |-  ( r  =  U  ->  (
r  <  ( abs `  x )  <->  U  <  ( abs `  x ) ) )
156155imbi1d 318 . . . . . 6  |-  ( r  =  U  ->  (
( r  <  ( abs `  x )  -> 
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  x
) ) )  <->  ( U  <  ( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) ) )
157156ralbidv 2804 . . . . 5  |-  ( r  =  U  ->  ( A. x  e.  CC  ( r  <  ( abs `  x )  -> 
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  x
) ) )  <->  A. x  e.  CC  ( U  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) ) )
158157rspcev 3125 . . . 4  |-  ( ( U  e.  RR+  /\  A. x  e.  CC  ( U  <  ( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )  ->  E. r  e.  RR+  A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
15954, 154, 158syl6an 547 . . 3  |-  ( (
ph  /\  s  e.  RR )  ->  ( A. x  e.  CC  (
s  <  ( abs `  x )  ->  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) )  < 
( ( ( abs `  ( A `  N
) )  /  2
)  x.  ( ( abs `  x ) ^ N ) ) )  ->  E. r  e.  RR+  A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) ) )
160159rexlimdva 2856 . 2  |-  ( ph  ->  ( E. s  e.  RR  A. x  e.  CC  ( s  < 
( abs `  x
)  ->  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) )  <  (
( ( abs `  ( A `  N )
)  /  2 )  x.  ( ( abs `  x ) ^ N
) ) )  ->  E. r  e.  RR+  A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) ) )
16125, 160mpd 15 1  |-  ( ph  ->  E. r  e.  RR+  A. x  e.  CC  (
r  <  ( abs `  x )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714   E.wrex 2715   ifcif 3854   class class class wbr 4366   -->wf 5540   ` cfv 5544  (class class class)co 6249   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    < clt 9626    <_ cle 9627    - cmin 9811    / cdiv 10220   NNcn 10560   2c2 10610   NN0cn0 10820   ZZ>=cuz 11110   RR+crp 11253   ...cfz 11735   ^cexp 12222   abscabs 13241   sum_csu 13695   0pc0p 22569  Polycply 23080  coeffccoe 23082  degcdgr 23083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-of 6489  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-oadd 7141  df-er 7318  df-map 7429  df-pm 7430  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-sup 7909  df-inf 7910  df-oi 7978  df-card 8325  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-n0 10821  df-z 10889  df-uz 11111  df-rp 11254  df-ico 11592  df-fz 11736  df-fzo 11867  df-fl 11978  df-seq 12164  df-exp 12223  df-hash 12466  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-clim 13495  df-rlim 13496  df-sum 13696  df-0p 22570  df-ply 23084  df-coe 23086  df-dgr 23087
This theorem is referenced by:  fta  23948
  Copyright terms: Public domain W3C validator