MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem1 Structured version   Unicode version

Theorem ftalem1 22385
Description: Lemma for fta 22392: "growth lemma". There exists some  r such that  F is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1  |-  A  =  (coeff `  F )
ftalem.2  |-  N  =  (deg `  F )
ftalem.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
ftalem.4  |-  ( ph  ->  N  e.  NN )
ftalem1.5  |-  ( ph  ->  E  e.  RR+ )
ftalem1.6  |-  T  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  /  E )
Assertion
Ref Expression
ftalem1  |-  ( ph  ->  E. r  e.  RR  A. x  e.  CC  (
r  <  ( abs `  x )  ->  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) )  < 
( E  x.  (
( abs `  x
) ^ N ) ) ) )
Distinct variable groups:    k, r, x, A    E, r    k, N, r, x    k, F, r, x    ph, k, x    S, k    T, k, r, x
Allowed substitution hints:    ph( r)    S( x, r)    E( x, k)

Proof of Theorem ftalem1
StepHypRef Expression
1 ftalem1.6 . . . 4  |-  T  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  /  E )
2 fzfid 11787 . . . . . 6  |-  ( ph  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
3 ftalem.3 . . . . . . . . 9  |-  ( ph  ->  F  e.  (Poly `  S ) )
4 ftalem.1 . . . . . . . . . 10  |-  A  =  (coeff `  F )
54coef3 21675 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
63, 5syl 16 . . . . . . . 8  |-  ( ph  ->  A : NN0 --> CC )
7 elfznn0 11473 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
8 ffvelrn 5836 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
96, 7, 8syl2an 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A `  k )  e.  CC )
109abscld 12914 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( abs `  ( A `  k ) )  e.  RR )
112, 10fsumrecl 13203 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  e.  RR )
12 ftalem1.5 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
1311, 12rerpdivcld 11046 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  /  E )  e.  RR )
141, 13syl5eqel 2522 . . 3  |-  ( ph  ->  T  e.  RR )
15 1re 9377 . . 3  |-  1  e.  RR
16 ifcl 3826 . . 3  |-  ( ( T  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_  T ,  T , 
1 )  e.  RR )
1714, 15, 16sylancl 662 . 2  |-  ( ph  ->  if ( 1  <_  T ,  T , 
1 )  e.  RR )
183adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  F  e.  (Poly `  S
) )
19 simprl 755 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  x  e.  CC )
20 ftalem.2 . . . . . . . . . . 11  |-  N  =  (deg `  F )
214, 20coeid2 21682 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  ->  ( F `  x )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) ) )
2218, 19, 21syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( F `  x
)  =  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) )
23 ftalem.4 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN )
2423nnnn0d 10628 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN0 )
2524adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  N  e.  NN0 )
26 nn0uz 10887 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
2725, 26syl6eleq 2528 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  N  e.  ( ZZ>= ` 
0 ) )
28 elfznn0 11473 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
296adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  A : NN0 --> CC )
3029, 8sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
31 expcl 11875 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ k
)  e.  CC )
3219, 31sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  NN0 )  -> 
( x ^ k
)  e.  CC )
3330, 32mulcld 9398 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  NN0 )  -> 
( ( A `  k )  x.  (
x ^ k ) )  e.  CC )
3428, 33sylan2 474 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... N ) )  ->  ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
35 fveq2 5686 . . . . . . . . . . 11  |-  ( k  =  N  ->  ( A `  k )  =  ( A `  N ) )
36 oveq2 6094 . . . . . . . . . . 11  |-  ( k  =  N  ->  (
x ^ k )  =  ( x ^ N ) )
3735, 36oveq12d 6104 . . . . . . . . . 10  |-  ( k  =  N  ->  (
( A `  k
)  x.  ( x ^ k ) )  =  ( ( A `
 N )  x.  ( x ^ N
) ) )
3827, 34, 37fsumm1 13212 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `
 k )  x.  ( x ^ k
) )  +  ( ( A `  N
)  x.  ( x ^ N ) ) ) )
3922, 38eqtrd 2470 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( F `  x
)  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  k
)  x.  ( x ^ k ) )  +  ( ( A `
 N )  x.  ( x ^ N
) ) ) )
4039oveq1d 6101 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) )  =  ( (
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `  k )  x.  (
x ^ k ) )  +  ( ( A `  N )  x.  ( x ^ N ) ) )  -  ( ( A `
 N )  x.  ( x ^ N
) ) ) )
41 fzfid 11787 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( 0 ... ( N  -  1 ) )  e.  Fin )
427, 33sylan2 474 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
4341, 42fsumcl 13202 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  k
)  x.  ( x ^ k ) )  e.  CC )
4429, 25ffvelrnd 5839 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( A `  N
)  e.  CC )
4519, 25expcld 12000 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( x ^ N
)  e.  CC )
4644, 45mulcld 9398 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( A `  N )  x.  (
x ^ N ) )  e.  CC )
4743, 46pncand 9712 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `
 k )  x.  ( x ^ k
) )  +  ( ( A `  N
)  x.  ( x ^ N ) ) )  -  ( ( A `  N )  x.  ( x ^ N ) ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `  k )  x.  (
x ^ k ) ) )
4840, 47eqtrd 2470 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `
 k )  x.  ( x ^ k
) ) )
4948fveq2d 5690 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  =  ( abs `  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `  k )  x.  (
x ^ k ) ) ) )
5043abscld 12914 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  k
)  x.  ( x ^ k ) ) )  e.  RR )
5142abscld 12914 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
( A `  k
)  x.  ( x ^ k ) ) )  e.  RR )
5241, 51fsumrecl 13203 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( ( A `  k )  x.  ( x ^
k ) ) )  e.  RR )
5312adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  E  e.  RR+ )
5453rpred 11019 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  E  e.  RR )
5519abscld 12914 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  x
)  e.  RR )
5655, 25reexpcld 12017 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ N )  e.  RR )
5754, 56remulcld 9406 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( E  x.  (
( abs `  x
) ^ N ) )  e.  RR )
5841, 42fsumabs 13256 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  k
)  x.  ( x ^ k ) ) )  <_  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  (
( A `  k
)  x.  ( x ^ k ) ) ) )
5911adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( A `
 k ) )  e.  RR )
6023adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  N  e.  NN )
61 nnm1nn0 10613 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
6260, 61syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( N  -  1 )  e.  NN0 )
6355, 62reexpcld 12017 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ ( N  -  1 ) )  e.  RR )
6459, 63remulcld 9406 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  e.  RR )
6510adantlr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  ( A `  k )
)  e.  RR )
6663adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( abs `  x ) ^ ( N  -  1 ) )  e.  RR )
6765, 66remulcld 9406 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( abs `  ( A `  k
) )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) )  e.  RR )
6830, 32absmuld 12932 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  NN0 )  -> 
( abs `  (
( A `  k
)  x.  ( x ^ k ) ) )  =  ( ( abs `  ( A `
 k ) )  x.  ( abs `  (
x ^ k ) ) ) )
697, 68sylan2 474 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
( A `  k
)  x.  ( x ^ k ) ) )  =  ( ( abs `  ( A `
 k ) )  x.  ( abs `  (
x ^ k ) ) ) )
707, 32sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( x ^
k )  e.  CC )
7170abscld 12914 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
x ^ k ) )  e.  RR )
727, 30sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( A `  k )  e.  CC )
7372absge0d 12922 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  0  <_  ( abs `  ( A `  k ) ) )
74 absexp 12785 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
x ^ k ) )  =  ( ( abs `  x ) ^ k ) )
7519, 7, 74syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
x ^ k ) )  =  ( ( abs `  x ) ^ k ) )
7655adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  x
)  e.  RR )
7715a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
1  e.  RR )
7817adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  if ( 1  <_  T ,  T ,  1 )  e.  RR )
79 max1 11149 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  1  <_  if (
1  <_  T ,  T ,  1 ) )
8015, 14, 79sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  <_  if (
1  <_  T ,  T ,  1 ) )
8180adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
1  <_  if (
1  <_  T ,  T ,  1 ) )
82 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) )
8377, 78, 55, 81, 82lelttrd 9521 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
1  <  ( abs `  x ) )
8477, 55, 83ltled 9514 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
1  <_  ( abs `  x ) )
8584adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  1  <_  ( abs `  x ) )
86 elfzuz3 11442 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  k
) )
8786adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( N  - 
1 )  e.  (
ZZ>= `  k ) )
8876, 85, 87leexp2ad 12032 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( abs `  x ) ^ k
)  <_  ( ( abs `  x ) ^
( N  -  1 ) ) )
8975, 88eqbrtrd 4307 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
x ^ k ) )  <_  ( ( abs `  x ) ^
( N  -  1 ) ) )
9071, 66, 65, 73, 89lemul2ad 10265 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( abs `  ( A `  k
) )  x.  ( abs `  ( x ^
k ) ) )  <_  ( ( abs `  ( A `  k
) )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) ) )
9169, 90eqbrtrd 4307 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
( A `  k
)  x.  ( x ^ k ) ) )  <_  ( ( abs `  ( A `  k ) )  x.  ( ( abs `  x
) ^ ( N  -  1 ) ) ) )
9241, 51, 67, 91fsumle 13254 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( ( A `  k )  x.  ( x ^
k ) ) )  <_  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) ) )
9363recnd 9404 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ ( N  -  1 ) )  e.  CC )
9465recnd 9404 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  ( A `  k )
)  e.  CC )
9541, 93, 94fsummulc1 13244 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) ) )
9692, 95breqtrrd 4313 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( ( A `  k )  x.  ( x ^
k ) ) )  <_  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) ) )
9714adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  T  e.  RR )
98 max2 11151 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  T  <_  if (
1  <_  T ,  T ,  1 ) )
9915, 14, 98sylancr 663 . . . . . . . . . . . . 13  |-  ( ph  ->  T  <_  if (
1  <_  T ,  T ,  1 ) )
10099adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  T  <_  if ( 1  <_  T ,  T ,  1 ) )
10197, 78, 55, 100, 82lelttrd 9521 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  T  <  ( abs `  x
) )
1021, 101syl5eqbrr 4321 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  /  E )  <  ( abs `  x
) )
10359, 55, 53ltdivmuld 11066 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  /  E )  <  ( abs `  x
)  <->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  <  ( E  x.  ( abs `  x
) ) ) )
104102, 103mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( A `
 k ) )  <  ( E  x.  ( abs `  x ) ) )
10554, 55remulcld 9406 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( E  x.  ( abs `  x ) )  e.  RR )
10662nn0zd 10737 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( N  -  1 )  e.  ZZ )
107 0red 9379 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
0  e.  RR )
108 0lt1 9854 . . . . . . . . . . . . 13  |-  0  <  1
109108a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
0  <  1 )
110107, 77, 55, 109, 83lttrd 9524 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
0  <  ( abs `  x ) )
111 expgt0 11889 . . . . . . . . . . 11  |-  ( ( ( abs `  x
)  e.  RR  /\  ( N  -  1
)  e.  ZZ  /\  0  <  ( abs `  x
) )  ->  0  <  ( ( abs `  x
) ^ ( N  -  1 ) ) )
11255, 106, 110, 111syl3anc 1218 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
0  <  ( ( abs `  x ) ^
( N  -  1 ) ) )
113 ltmul1 10171 . . . . . . . . . 10  |-  ( (
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  e.  RR  /\  ( E  x.  ( abs `  x ) )  e.  RR  /\  (
( ( abs `  x
) ^ ( N  -  1 ) )  e.  RR  /\  0  <  ( ( abs `  x
) ^ ( N  -  1 ) ) ) )  ->  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( A `
 k ) )  <  ( E  x.  ( abs `  x ) )  <->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  <  ( ( E  x.  ( abs `  x
) )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) ) ) )
11459, 105, 63, 112, 113syl112anc 1222 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  <  ( E  x.  ( abs `  x
) )  <->  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( A `
 k ) )  x.  ( ( abs `  x ) ^ ( N  -  1 ) ) )  <  (
( E  x.  ( abs `  x ) )  x.  ( ( abs `  x ) ^ ( N  -  1 ) ) ) ) )
115104, 114mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  <  ( ( E  x.  ( abs `  x
) )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) ) )
11655recnd 9404 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  x
)  e.  CC )
117 expm1t 11884 . . . . . . . . . . . 12  |-  ( ( ( abs `  x
)  e.  CC  /\  N  e.  NN )  ->  ( ( abs `  x
) ^ N )  =  ( ( ( abs `  x ) ^ ( N  - 
1 ) )  x.  ( abs `  x
) ) )
118116, 60, 117syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ N )  =  ( ( ( abs `  x ) ^ ( N  - 
1 ) )  x.  ( abs `  x
) ) )
11993, 116mulcomd 9399 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( ( abs `  x ) ^ ( N  -  1 ) )  x.  ( abs `  x ) )  =  ( ( abs `  x
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) ) )
120118, 119eqtrd 2470 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ N )  =  ( ( abs `  x )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) ) )
121120oveq2d 6102 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( E  x.  (
( abs `  x
) ^ N ) )  =  ( E  x.  ( ( abs `  x )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) ) ) )
12254recnd 9404 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  E  e.  CC )
123122, 116, 93mulassd 9401 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( E  x.  ( abs `  x ) )  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  =  ( E  x.  ( ( abs `  x
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) ) ) )
124121, 123eqtr4d 2473 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( E  x.  (
( abs `  x
) ^ N ) )  =  ( ( E  x.  ( abs `  x ) )  x.  ( ( abs `  x
) ^ ( N  -  1 ) ) ) )
125115, 124breqtrrd 4313 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  <  ( E  x.  ( ( abs `  x
) ^ N ) ) )
12652, 64, 57, 96, 125lelttrd 9521 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( ( A `  k )  x.  ( x ^
k ) ) )  <  ( E  x.  ( ( abs `  x
) ^ N ) ) )
12750, 52, 57, 58, 126lelttrd 9521 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  k
)  x.  ( x ^ k ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N
) ) )
12849, 127eqbrtrd 4307 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N
) ) )
129128expr 615 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
)  ->  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N ) ) ) )
130129ralrimiva 2794 . 2  |-  ( ph  ->  A. x  e.  CC  ( if ( 1  <_  T ,  T , 
1 )  <  ( abs `  x )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N
) ) ) )
131 breq1 4290 . . . . 5  |-  ( r  =  if ( 1  <_  T ,  T ,  1 )  -> 
( r  <  ( abs `  x )  <->  if (
1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )
132131imbi1d 317 . . . 4  |-  ( r  =  if ( 1  <_  T ,  T ,  1 )  -> 
( ( r  < 
( abs `  x
)  ->  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N ) ) )  <-> 
( if ( 1  <_  T ,  T ,  1 )  < 
( abs `  x
)  ->  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N ) ) ) ) )
133132ralbidv 2730 . . 3  |-  ( r  =  if ( 1  <_  T ,  T ,  1 )  -> 
( A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N ) ) )  <->  A. x  e.  CC  ( if ( 1  <_  T ,  T , 
1 )  <  ( abs `  x )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N
) ) ) ) )
134133rspcev 3068 . 2  |-  ( ( if ( 1  <_  T ,  T , 
1 )  e.  RR  /\ 
A. x  e.  CC  ( if ( 1  <_  T ,  T , 
1 )  <  ( abs `  x )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N
) ) ) )  ->  E. r  e.  RR  A. x  e.  CC  (
r  <  ( abs `  x )  ->  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) )  < 
( E  x.  (
( abs `  x
) ^ N ) ) ) )
13517, 130, 134syl2anc 661 1  |-  ( ph  ->  E. r  e.  RR  A. x  e.  CC  (
r  <  ( abs `  x )  ->  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) )  < 
( E  x.  (
( abs `  x
) ^ N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711   ifcif 3786   class class class wbr 4287   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   NNcn 10314   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   RR+crp 10983   ...cfz 11429   ^cexp 11857   abscabs 12715   sum_csu 13155  Polycply 21627  coeffccoe 21629  degcdgr 21630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-ico 11298  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-rlim 12959  df-sum 13156  df-0p 21123  df-ply 21631  df-coe 21633  df-dgr 21634
This theorem is referenced by:  ftalem2  22386
  Copyright terms: Public domain W3C validator