MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem1 Structured version   Unicode version

Theorem ftalem1 22294
Description: Lemma for fta 22301: "growth lemma". There exists some  r such that  F is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1  |-  A  =  (coeff `  F )
ftalem.2  |-  N  =  (deg `  F )
ftalem.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
ftalem.4  |-  ( ph  ->  N  e.  NN )
ftalem1.5  |-  ( ph  ->  E  e.  RR+ )
ftalem1.6  |-  T  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  /  E )
Assertion
Ref Expression
ftalem1  |-  ( ph  ->  E. r  e.  RR  A. x  e.  CC  (
r  <  ( abs `  x )  ->  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) )  < 
( E  x.  (
( abs `  x
) ^ N ) ) ) )
Distinct variable groups:    k, r, x, A    E, r    k, N, r, x    k, F, r, x    ph, k, x    S, k    T, k, r, x
Allowed substitution hints:    ph( r)    S( x, r)    E( x, k)

Proof of Theorem ftalem1
StepHypRef Expression
1 ftalem1.6 . . . 4  |-  T  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  /  E )
2 fzfid 11778 . . . . . 6  |-  ( ph  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
3 ftalem.3 . . . . . . . . 9  |-  ( ph  ->  F  e.  (Poly `  S ) )
4 ftalem.1 . . . . . . . . . 10  |-  A  =  (coeff `  F )
54coef3 21584 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
63, 5syl 16 . . . . . . . 8  |-  ( ph  ->  A : NN0 --> CC )
7 elfznn0 11467 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
8 ffvelrn 5829 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
96, 7, 8syl2an 474 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A `  k )  e.  CC )
109abscld 12905 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( abs `  ( A `  k ) )  e.  RR )
112, 10fsumrecl 13194 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  e.  RR )
12 ftalem1.5 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
1311, 12rerpdivcld 11041 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  /  E )  e.  RR )
141, 13syl5eqel 2517 . . 3  |-  ( ph  ->  T  e.  RR )
15 1re 9372 . . 3  |-  1  e.  RR
16 ifcl 3819 . . 3  |-  ( ( T  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_  T ,  T , 
1 )  e.  RR )
1714, 15, 16sylancl 655 . 2  |-  ( ph  ->  if ( 1  <_  T ,  T , 
1 )  e.  RR )
183adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  F  e.  (Poly `  S
) )
19 simprl 748 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  x  e.  CC )
20 ftalem.2 . . . . . . . . . . 11  |-  N  =  (deg `  F )
214, 20coeid2 21591 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  ->  ( F `  x )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) ) )
2218, 19, 21syl2anc 654 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( F `  x
)  =  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) )
23 ftalem.4 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN )
2423nnnn0d 10623 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN0 )
2524adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  N  e.  NN0 )
26 nn0uz 10882 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
2725, 26syl6eleq 2523 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  N  e.  ( ZZ>= ` 
0 ) )
28 elfznn0 11467 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
296adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  A : NN0 --> CC )
3029, 8sylan 468 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
31 expcl 11866 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ k
)  e.  CC )
3219, 31sylan 468 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  NN0 )  -> 
( x ^ k
)  e.  CC )
3330, 32mulcld 9393 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  NN0 )  -> 
( ( A `  k )  x.  (
x ^ k ) )  e.  CC )
3428, 33sylan2 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... N ) )  ->  ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
35 fveq2 5679 . . . . . . . . . . 11  |-  ( k  =  N  ->  ( A `  k )  =  ( A `  N ) )
36 oveq2 6088 . . . . . . . . . . 11  |-  ( k  =  N  ->  (
x ^ k )  =  ( x ^ N ) )
3735, 36oveq12d 6098 . . . . . . . . . 10  |-  ( k  =  N  ->  (
( A `  k
)  x.  ( x ^ k ) )  =  ( ( A `
 N )  x.  ( x ^ N
) ) )
3827, 34, 37fsumm1 13203 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `
 k )  x.  ( x ^ k
) )  +  ( ( A `  N
)  x.  ( x ^ N ) ) ) )
3922, 38eqtrd 2465 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( F `  x
)  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  k
)  x.  ( x ^ k ) )  +  ( ( A `
 N )  x.  ( x ^ N
) ) ) )
4039oveq1d 6095 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) )  =  ( (
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `  k )  x.  (
x ^ k ) )  +  ( ( A `  N )  x.  ( x ^ N ) ) )  -  ( ( A `
 N )  x.  ( x ^ N
) ) ) )
41 fzfid 11778 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( 0 ... ( N  -  1 ) )  e.  Fin )
427, 33sylan2 471 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
4341, 42fsumcl 13193 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  k
)  x.  ( x ^ k ) )  e.  CC )
4429, 25ffvelrnd 5832 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( A `  N
)  e.  CC )
4519, 25expcld 11991 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( x ^ N
)  e.  CC )
4644, 45mulcld 9393 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( A `  N )  x.  (
x ^ N ) )  e.  CC )
4743, 46pncand 9707 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `
 k )  x.  ( x ^ k
) )  +  ( ( A `  N
)  x.  ( x ^ N ) ) )  -  ( ( A `  N )  x.  ( x ^ N ) ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `  k )  x.  (
x ^ k ) ) )
4840, 47eqtrd 2465 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `
 k )  x.  ( x ^ k
) ) )
4948fveq2d 5683 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  =  ( abs `  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( A `  k )  x.  (
x ^ k ) ) ) )
5043abscld 12905 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  k
)  x.  ( x ^ k ) ) )  e.  RR )
5142abscld 12905 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
( A `  k
)  x.  ( x ^ k ) ) )  e.  RR )
5241, 51fsumrecl 13194 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( ( A `  k )  x.  ( x ^
k ) ) )  e.  RR )
5312adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  E  e.  RR+ )
5453rpred 11014 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  E  e.  RR )
5519abscld 12905 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  x
)  e.  RR )
5655, 25reexpcld 12008 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ N )  e.  RR )
5754, 56remulcld 9401 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( E  x.  (
( abs `  x
) ^ N ) )  e.  RR )
5841, 42fsumabs 13246 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  k
)  x.  ( x ^ k ) ) )  <_  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  (
( A `  k
)  x.  ( x ^ k ) ) ) )
5911adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( A `
 k ) )  e.  RR )
6023adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  N  e.  NN )
61 nnm1nn0 10608 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
6260, 61syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( N  -  1 )  e.  NN0 )
6355, 62reexpcld 12008 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ ( N  -  1 ) )  e.  RR )
6459, 63remulcld 9401 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  e.  RR )
6510adantlr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  ( A `  k )
)  e.  RR )
6663adantr 462 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( abs `  x ) ^ ( N  -  1 ) )  e.  RR )
6765, 66remulcld 9401 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( abs `  ( A `  k
) )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) )  e.  RR )
6830, 32absmuld 12923 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  NN0 )  -> 
( abs `  (
( A `  k
)  x.  ( x ^ k ) ) )  =  ( ( abs `  ( A `
 k ) )  x.  ( abs `  (
x ^ k ) ) ) )
697, 68sylan2 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
( A `  k
)  x.  ( x ^ k ) ) )  =  ( ( abs `  ( A `
 k ) )  x.  ( abs `  (
x ^ k ) ) ) )
707, 32sylan2 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( x ^
k )  e.  CC )
7170abscld 12905 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
x ^ k ) )  e.  RR )
727, 30sylan2 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( A `  k )  e.  CC )
7372absge0d 12913 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  0  <_  ( abs `  ( A `  k ) ) )
74 absexp 12776 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
x ^ k ) )  =  ( ( abs `  x ) ^ k ) )
7519, 7, 74syl2an 474 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
x ^ k ) )  =  ( ( abs `  x ) ^ k ) )
7655adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  x
)  e.  RR )
7715a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
1  e.  RR )
7817adantr 462 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  if ( 1  <_  T ,  T ,  1 )  e.  RR )
79 max1 11144 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  1  <_  if (
1  <_  T ,  T ,  1 ) )
8015, 14, 79sylancr 656 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  <_  if (
1  <_  T ,  T ,  1 ) )
8180adantr 462 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
1  <_  if (
1  <_  T ,  T ,  1 ) )
82 simprr 749 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) )
8377, 78, 55, 81, 82lelttrd 9516 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
1  <  ( abs `  x ) )
8477, 55, 83ltled 9509 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
1  <_  ( abs `  x ) )
8584adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  1  <_  ( abs `  x ) )
86 elfzuz3 11436 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  k
) )
8786adantl 463 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( N  - 
1 )  e.  (
ZZ>= `  k ) )
8876, 85, 87leexp2ad 12023 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( abs `  x ) ^ k
)  <_  ( ( abs `  x ) ^
( N  -  1 ) ) )
8975, 88eqbrtrd 4300 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
x ^ k ) )  <_  ( ( abs `  x ) ^
( N  -  1 ) ) )
9071, 66, 65, 73, 89lemul2ad 10260 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( abs `  ( A `  k
) )  x.  ( abs `  ( x ^
k ) ) )  <_  ( ( abs `  ( A `  k
) )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) ) )
9169, 90eqbrtrd 4300 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  (
( A `  k
)  x.  ( x ^ k ) ) )  <_  ( ( abs `  ( A `  k ) )  x.  ( ( abs `  x
) ^ ( N  -  1 ) ) ) )
9241, 51, 67, 91fsumle 13244 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( ( A `  k )  x.  ( x ^
k ) ) )  <_  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) ) )
9363recnd 9399 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ ( N  -  1 ) )  e.  CC )
9465recnd 9399 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( abs `  ( A `  k )
)  e.  CC )
9541, 93, 94fsummulc1 13234 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) ) )
9692, 95breqtrrd 4306 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( ( A `  k )  x.  ( x ^
k ) ) )  <_  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) ) )
9714adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  T  e.  RR )
98 max2 11146 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  T  <_  if (
1  <_  T ,  T ,  1 ) )
9915, 14, 98sylancr 656 . . . . . . . . . . . . 13  |-  ( ph  ->  T  <_  if (
1  <_  T ,  T ,  1 ) )
10099adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  T  <_  if ( 1  <_  T ,  T ,  1 ) )
10197, 78, 55, 100, 82lelttrd 9516 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  T  <  ( abs `  x
) )
1021, 101syl5eqbrr 4314 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  /  E )  <  ( abs `  x
) )
10359, 55, 53ltdivmuld 11061 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  /  E )  <  ( abs `  x
)  <->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  <  ( E  x.  ( abs `  x
) ) ) )
104102, 103mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( A `
 k ) )  <  ( E  x.  ( abs `  x ) ) )
10554, 55remulcld 9401 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( E  x.  ( abs `  x ) )  e.  RR )
10662nn0zd 10732 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( N  -  1 )  e.  ZZ )
107 0red 9374 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
0  e.  RR )
108 0lt1 9849 . . . . . . . . . . . . 13  |-  0  <  1
109108a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
0  <  1 )
110107, 77, 55, 109, 83lttrd 9519 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
0  <  ( abs `  x ) )
111 expgt0 11880 . . . . . . . . . . 11  |-  ( ( ( abs `  x
)  e.  RR  /\  ( N  -  1
)  e.  ZZ  /\  0  <  ( abs `  x
) )  ->  0  <  ( ( abs `  x
) ^ ( N  -  1 ) ) )
11255, 106, 110, 111syl3anc 1211 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
0  <  ( ( abs `  x ) ^
( N  -  1 ) ) )
113 ltmul1 10166 . . . . . . . . . 10  |-  ( (
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  e.  RR  /\  ( E  x.  ( abs `  x ) )  e.  RR  /\  (
( ( abs `  x
) ^ ( N  -  1 ) )  e.  RR  /\  0  <  ( ( abs `  x
) ^ ( N  -  1 ) ) ) )  ->  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( A `
 k ) )  <  ( E  x.  ( abs `  x ) )  <->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  <  ( ( E  x.  ( abs `  x
) )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) ) ) )
11459, 105, 63, 112, 113syl112anc 1215 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  <  ( E  x.  ( abs `  x
) )  <->  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( A `
 k ) )  x.  ( ( abs `  x ) ^ ( N  -  1 ) ) )  <  (
( E  x.  ( abs `  x ) )  x.  ( ( abs `  x ) ^ ( N  -  1 ) ) ) ) )
115104, 114mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  <  ( ( E  x.  ( abs `  x
) )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) ) )
11655recnd 9399 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  x
)  e.  CC )
117 expm1t 11875 . . . . . . . . . . . 12  |-  ( ( ( abs `  x
)  e.  CC  /\  N  e.  NN )  ->  ( ( abs `  x
) ^ N )  =  ( ( ( abs `  x ) ^ ( N  - 
1 ) )  x.  ( abs `  x
) ) )
118116, 60, 117syl2anc 654 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ N )  =  ( ( ( abs `  x ) ^ ( N  - 
1 ) )  x.  ( abs `  x
) ) )
11993, 116mulcomd 9394 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( ( abs `  x ) ^ ( N  -  1 ) )  x.  ( abs `  x ) )  =  ( ( abs `  x
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) ) )
120118, 119eqtrd 2465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( abs `  x
) ^ N )  =  ( ( abs `  x )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) ) )
121120oveq2d 6096 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( E  x.  (
( abs `  x
) ^ N ) )  =  ( E  x.  ( ( abs `  x )  x.  (
( abs `  x
) ^ ( N  -  1 ) ) ) ) )
12254recnd 9399 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  E  e.  CC )
123122, 116, 93mulassd 9396 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( ( E  x.  ( abs `  x ) )  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  =  ( E  x.  ( ( abs `  x
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) ) ) )
124121, 123eqtr4d 2468 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( E  x.  (
( abs `  x
) ^ N ) )  =  ( ( E  x.  ( abs `  x ) )  x.  ( ( abs `  x
) ^ ( N  -  1 ) ) ) )
125115, 124breqtrrd 4306 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( abs `  ( A `  k )
)  x.  ( ( abs `  x ) ^ ( N  - 
1 ) ) )  <  ( E  x.  ( ( abs `  x
) ^ N ) ) )
12652, 64, 57, 96, 125lelttrd 9516 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( abs `  ( ( A `  k )  x.  ( x ^
k ) ) )  <  ( E  x.  ( ( abs `  x
) ^ N ) ) )
12750, 52, 57, 58, 126lelttrd 9516 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  k
)  x.  ( x ^ k ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N
) ) )
12849, 127eqbrtrd 4300 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N
) ) )
129128expr 610 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( if ( 1  <_  T ,  T ,  1 )  <  ( abs `  x
)  ->  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N ) ) ) )
130129ralrimiva 2789 . 2  |-  ( ph  ->  A. x  e.  CC  ( if ( 1  <_  T ,  T , 
1 )  <  ( abs `  x )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N
) ) ) )
131 breq1 4283 . . . . 5  |-  ( r  =  if ( 1  <_  T ,  T ,  1 )  -> 
( r  <  ( abs `  x )  <->  if (
1  <_  T ,  T ,  1 )  <  ( abs `  x
) ) )
132131imbi1d 317 . . . 4  |-  ( r  =  if ( 1  <_  T ,  T ,  1 )  -> 
( ( r  < 
( abs `  x
)  ->  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N ) ) )  <-> 
( if ( 1  <_  T ,  T ,  1 )  < 
( abs `  x
)  ->  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N ) ) ) ) )
133132ralbidv 2725 . . 3  |-  ( r  =  if ( 1  <_  T ,  T ,  1 )  -> 
( A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( ( F `  x )  -  (
( A `  N
)  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N ) ) )  <->  A. x  e.  CC  ( if ( 1  <_  T ,  T , 
1 )  <  ( abs `  x )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N
) ) ) ) )
134133rspcev 3062 . 2  |-  ( ( if ( 1  <_  T ,  T , 
1 )  e.  RR  /\ 
A. x  e.  CC  ( if ( 1  <_  T ,  T , 
1 )  <  ( abs `  x )  -> 
( abs `  (
( F `  x
)  -  ( ( A `  N )  x.  ( x ^ N ) ) ) )  <  ( E  x.  ( ( abs `  x ) ^ N
) ) ) )  ->  E. r  e.  RR  A. x  e.  CC  (
r  <  ( abs `  x )  ->  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) )  < 
( E  x.  (
( abs `  x
) ^ N ) ) ) )
13517, 130, 134syl2anc 654 1  |-  ( ph  ->  E. r  e.  RR  A. x  e.  CC  (
r  <  ( abs `  x )  ->  ( abs `  ( ( F `
 x )  -  ( ( A `  N )  x.  (
x ^ N ) ) ) )  < 
( E  x.  (
( abs `  x
) ^ N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   E.wrex 2706   ifcif 3779   class class class wbr 4280   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9267   RRcr 9268   0cc0 9269   1c1 9270    + caddc 9272    x. cmul 9274    < clt 9405    <_ cle 9406    - cmin 9582    / cdiv 9980   NNcn 10309   NN0cn0 10566   ZZcz 10633   ZZ>=cuz 10848   RR+crp 10978   ...cfz 11423   ^cexp 11848   abscabs 12706   sum_csu 13146  Polycply 21536  coeffccoe 21538  degcdgr 21539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347  ax-addf 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-n0 10567  df-z 10634  df-uz 10849  df-rp 10979  df-ico 11293  df-fz 11424  df-fzo 11532  df-fl 11625  df-seq 11790  df-exp 11849  df-hash 12087  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-clim 12949  df-rlim 12950  df-sum 13147  df-0p 20989  df-ply 21540  df-coe 21542  df-dgr 21543
This theorem is referenced by:  ftalem2  22295
  Copyright terms: Public domain W3C validator