MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem2 Structured version   Visualization version   Unicode version

Theorem fta1glem2 23117
Description: Lemma for fta1g 23118. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p  |-  P  =  (Poly1 `  R )
fta1g.b  |-  B  =  ( Base `  P
)
fta1g.d  |-  D  =  ( deg1  `  R )
fta1g.o  |-  O  =  (eval1 `  R )
fta1g.w  |-  W  =  ( 0g `  R
)
fta1g.z  |-  .0.  =  ( 0g `  P )
fta1g.1  |-  ( ph  ->  R  e. IDomn )
fta1g.2  |-  ( ph  ->  F  e.  B )
fta1glem.k  |-  K  =  ( Base `  R
)
fta1glem.x  |-  X  =  (var1 `  R )
fta1glem.m  |-  .-  =  ( -g `  P )
fta1glem.a  |-  A  =  (algSc `  P )
fta1glem.g  |-  G  =  ( X  .-  ( A `  T )
)
fta1glem.3  |-  ( ph  ->  N  e.  NN0 )
fta1glem.4  |-  ( ph  ->  ( D `  F
)  =  ( N  +  1 ) )
fta1glem.5  |-  ( ph  ->  T  e.  ( `' ( O `  F
) " { W } ) )
fta1glem.6  |-  ( ph  ->  A. g  e.  B  ( ( D `  g )  =  N  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) ) )
Assertion
Ref Expression
fta1glem2  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  <_ 
( D `  F
) )
Distinct variable groups:    B, g    D, g    g, F    g, N    g, O    g, G    P, g    R, g    g, W
Allowed substitution hints:    ph( g)    A( g)    T( g)    K( g)    .- ( g)    X( g)    .0. ( g)

Proof of Theorem fta1glem2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fta1glem.5 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  T  e.  ( `' ( O `  F
) " { W } ) )
2 eqid 2451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  ^s  K )  =  ( R  ^s  K )
3 fta1glem.k . . . . . . . . . . . . . . . . . . . . 21  |-  K  =  ( Base `  R
)
4 eqid 2451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
5 fta1g.1 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  R  e. IDomn )
6 fvex 5875 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Base `  R )  e.  _V
73, 6eqeltri 2525 . . . . . . . . . . . . . . . . . . . . . 22  |-  K  e. 
_V
87a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  K  e.  _V )
9 isidom 18528 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
109simplbi 462 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( R  e. IDomn  ->  R  e.  CRing )
115, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  R  e.  CRing )
12 fta1g.o . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  O  =  (eval1 `  R )
13 fta1g.p . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  P  =  (Poly1 `  R )
1412, 13, 2, 3evl1rhm 18920 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
1511, 14syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
16 fta1g.b . . . . . . . . . . . . . . . . . . . . . . . 24  |-  B  =  ( Base `  P
)
1716, 4rhmf 17954 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
1815, 17syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
19 fta1g.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  F  e.  B )
2018, 19ffvelrnd 6023 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( O `  F
)  e.  ( Base `  ( R  ^s  K ) ) )
212, 3, 4, 5, 8, 20pwselbas 15387 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( O `  F
) : K --> K )
22 ffn 5728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( O `  F ) : K --> K  -> 
( O `  F
)  Fn  K )
2321, 22syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( O `  F
)  Fn  K )
24 fniniseg 6003 . . . . . . . . . . . . . . . . . . 19  |-  ( ( O `  F )  Fn  K  ->  ( T  e.  ( `' ( O `  F )
" { W }
)  <->  ( T  e.  K  /\  ( ( O `  F ) `
 T )  =  W ) ) )
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( T  e.  ( `' ( O `  F ) " { W } )  <->  ( T  e.  K  /\  (
( O `  F
) `  T )  =  W ) ) )
261, 25mpbid 214 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( T  e.  K  /\  ( ( O `  F ) `  T
)  =  W ) )
2726simprd 465 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( O `  F ) `  T
)  =  W )
28 fta1glem.x . . . . . . . . . . . . . . . . 17  |-  X  =  (var1 `  R )
29 fta1glem.m . . . . . . . . . . . . . . . . 17  |-  .-  =  ( -g `  P )
30 fta1glem.a . . . . . . . . . . . . . . . . 17  |-  A  =  (algSc `  P )
31 fta1glem.g . . . . . . . . . . . . . . . . 17  |-  G  =  ( X  .-  ( A `  T )
)
329simprbi 466 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. IDomn  ->  R  e. Domn )
33 domnnzr 18519 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. Domn  ->  R  e. NzRing )
3432, 33syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( R  e. IDomn  ->  R  e. NzRing )
355, 34syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  R  e. NzRing )
3626simpld 461 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  T  e.  K )
37 fta1g.w . . . . . . . . . . . . . . . . 17  |-  W  =  ( 0g `  R
)
38 eqid 2451 . . . . . . . . . . . . . . . . 17  |-  ( ||r `  P
)  =  ( ||r `  P
)
3913, 16, 3, 28, 29, 30, 31, 12, 35, 11, 36, 19, 37, 38facth1 23115 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( G ( ||r `  P
) F  <->  ( ( O `  F ) `  T )  =  W ) )
4027, 39mpbird 236 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G ( ||r `
 P ) F )
41 nzrring 18485 . . . . . . . . . . . . . . . . 17  |-  ( R  e. NzRing  ->  R  e.  Ring )
4235, 41syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  R  e.  Ring )
43 eqid 2451 . . . . . . . . . . . . . . . . . . 19  |-  (Monic1p `  R
)  =  (Monic1p `  R
)
44 fta1g.d . . . . . . . . . . . . . . . . . . 19  |-  D  =  ( deg1  `  R )
4513, 16, 3, 28, 29, 30, 31, 12, 35, 11, 36, 43, 44, 37ply1remlem 23113 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G  e.  (Monic1p `  R )  /\  ( D `  G )  =  1  /\  ( `' ( O `  G ) " { W } )  =  { T } ) )
4645simp1d 1020 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G  e.  (Monic1p `  R
) )
47 eqid 2451 . . . . . . . . . . . . . . . . . 18  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
4847, 43mon1puc1p 23101 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  G  e.  (Monic1p `  R ) )  ->  G  e.  (Unic1p `  R ) )
4942, 46, 48syl2anc 667 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e.  (Unic1p `  R
) )
50 eqid 2451 . . . . . . . . . . . . . . . . 17  |-  ( .r
`  P )  =  ( .r `  P
)
51 eqid 2451 . . . . . . . . . . . . . . . . 17  |-  (quot1p `  R
)  =  (quot1p `  R
)
5213, 38, 16, 47, 50, 51dvdsq1p 23111 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( G (
||r `  P ) F  <->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) )
5342, 19, 49, 52syl3anc 1268 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G ( ||r `  P
) F  <->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) )
5440, 53mpbid 214 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) )
5554fveq2d 5869 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  F
)  =  ( O `
 ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) ) )
5651, 13, 16, 47q1pcl 23106 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( F (quot1p `  R ) G )  e.  B )
5742, 19, 49, 56syl3anc 1268 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F (quot1p `  R
) G )  e.  B )
5813, 16, 43mon1pcl 23095 . . . . . . . . . . . . . . 15  |-  ( G  e.  (Monic1p `  R )  ->  G  e.  B )
5946, 58syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  B )
60 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( .r
`  ( R  ^s  K
) )  =  ( .r `  ( R  ^s  K ) )
6116, 50, 60rhmmul 17955 . . . . . . . . . . . . . 14  |-  ( ( O  e.  ( P RingHom 
( R  ^s  K ) )  /\  ( F (quot1p `  R ) G )  e.  B  /\  G  e.  B )  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  =  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) ) )
6215, 57, 59, 61syl3anc 1268 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  =  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) ) )
6318, 57ffvelrnd 6023 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) )  e.  (
Base `  ( R  ^s  K ) ) )
6418, 59ffvelrnd 6023 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( O `  G
)  e.  ( Base `  ( R  ^s  K ) ) )
65 eqid 2451 . . . . . . . . . . . . . 14  |-  ( .r
`  R )  =  ( .r `  R
)
662, 4, 5, 8, 63, 64, 65, 60pwsmulrval 15389 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) )  =  ( ( O `
 ( F (quot1p `  R ) G ) )  oF ( .r `  R ) ( O `  G
) ) )
6755, 62, 663eqtrd 2489 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  F
)  =  ( ( O `  ( F (quot1p `  R ) G ) )  oF ( .r `  R
) ( O `  G ) ) )
6867fveq1d 5867 . . . . . . . . . . 11  |-  ( ph  ->  ( ( O `  F ) `  x
)  =  ( ( ( O `  ( F (quot1p `  R ) G ) )  oF ( .r `  R
) ( O `  G ) ) `  x ) )
6968adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  F
) `  x )  =  ( ( ( O `  ( F (quot1p `  R ) G ) )  oF ( .r `  R
) ( O `  G ) ) `  x ) )
702, 3, 4, 5, 8, 63pwselbas 15387 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) ) : K --> K )
71 ffn 5728 . . . . . . . . . . . . 13  |-  ( ( O `  ( F (quot1p `  R ) G ) ) : K --> K  ->  ( O `  ( F (quot1p `  R ) G ) )  Fn  K
)
7270, 71syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) )  Fn  K
)
7372adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  ( O `  ( F
(quot1p `
 R ) G ) )  Fn  K
)
742, 3, 4, 5, 8, 64pwselbas 15387 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  G
) : K --> K )
75 ffn 5728 . . . . . . . . . . . . 13  |-  ( ( O `  G ) : K --> K  -> 
( O `  G
)  Fn  K )
7674, 75syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  G
)  Fn  K )
7776adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  ( O `  G )  Fn  K )
787a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  K  e.  _V )
79 simpr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  x  e.  K )
80 fnfvof 6545 . . . . . . . . . . 11  |-  ( ( ( ( O `  ( F (quot1p `  R ) G ) )  Fn  K  /\  ( O `  G
)  Fn  K )  /\  ( K  e. 
_V  /\  x  e.  K ) )  -> 
( ( ( O `
 ( F (quot1p `  R ) G ) )  oF ( .r `  R ) ( O `  G
) ) `  x
)  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) ) )
8173, 77, 78, 79, 80syl22anc 1269 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  ( F (quot1p `  R ) G ) )  oF ( .r `  R
) ( O `  G ) ) `  x )  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) ) )
8269, 81eqtrd 2485 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  F
) `  x )  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) ) )
8382eqeq1d 2453 . . . . . . . 8  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  F ) `  x
)  =  W  <->  ( (
( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) )  =  W ) )
845, 32syl 17 . . . . . . . . . 10  |-  ( ph  ->  R  e. Domn )
8584adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  R  e. Domn )
8670ffvelrnda 6022 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  e.  K )
8774ffvelrnda 6022 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  G
) `  x )  e.  K )
883, 65, 37domneq0 18521 . . . . . . . . 9  |-  ( ( R  e. Domn  /\  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  e.  K  /\  ( ( O `  G ) `  x
)  e.  K )  ->  ( ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) )  =  W  <->  ( (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) )
8985, 86, 87, 88syl3anc 1268 . . . . . . . 8  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( ( O `
 ( F (quot1p `  R ) G ) ) `  x ) ( .r `  R
) ( ( O `
 G ) `  x ) )  =  W  <->  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) )
9083, 89bitrd 257 . . . . . . 7  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  F ) `  x
)  =  W  <->  ( (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) )
9190pm5.32da 647 . . . . . 6  |-  ( ph  ->  ( ( x  e.  K  /\  ( ( O `  F ) `
 x )  =  W )  <->  ( x  e.  K  /\  (
( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) ) )
92 andi 878 . . . . . 6  |-  ( ( x  e.  K  /\  ( ( ( O `
 ( F (quot1p `  R ) G ) ) `  x )  =  W  \/  (
( O `  G
) `  x )  =  W ) )  <->  ( (
x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) )
9391, 92syl6bb 265 . . . . 5  |-  ( ph  ->  ( ( x  e.  K  /\  ( ( O `  F ) `
 x )  =  W )  <->  ( (
x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) ) )
94 fniniseg 6003 . . . . . 6  |-  ( ( O `  F )  Fn  K  ->  (
x  e.  ( `' ( O `  F
) " { W } )  <->  ( x  e.  K  /\  (
( O `  F
) `  x )  =  W ) ) )
9523, 94syl 17 . . . . 5  |-  ( ph  ->  ( x  e.  ( `' ( O `  F ) " { W } )  <->  ( x  e.  K  /\  (
( O `  F
) `  x )  =  W ) ) )
96 elun 3574 . . . . . 6  |-  ( x  e.  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  <->  ( x  e.  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  \/  x  e.  { T } ) )
97 fniniseg 6003 . . . . . . . 8  |-  ( ( O `  ( F (quot1p `  R ) G ) )  Fn  K  ->  ( x  e.  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  <->  ( x  e.  K  /\  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W ) ) )
9872, 97syl 17 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  <->  ( x  e.  K  /\  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W ) ) )
9945simp3d 1022 . . . . . . . . 9  |-  ( ph  ->  ( `' ( O `
 G ) " { W } )  =  { T } )
10099eleq2d 2514 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( O `  G ) " { W } )  <->  x  e.  { T } ) )
101 fniniseg 6003 . . . . . . . . 9  |-  ( ( O `  G )  Fn  K  ->  (
x  e.  ( `' ( O `  G
) " { W } )  <->  ( x  e.  K  /\  (
( O `  G
) `  x )  =  W ) ) )
10276, 101syl 17 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( O `  G ) " { W } )  <->  ( x  e.  K  /\  (
( O `  G
) `  x )  =  W ) ) )
103100, 102bitr3d 259 . . . . . . 7  |-  ( ph  ->  ( x  e.  { T }  <->  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) )
10498, 103orbi12d 716 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  \/  x  e.  { T } )  <-> 
( ( x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) ) )
10596, 104syl5bb 261 . . . . 5  |-  ( ph  ->  ( x  e.  ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  <->  ( (
x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) ) )
10693, 95, 1053bitr4d 289 . . . 4  |-  ( ph  ->  ( x  e.  ( `' ( O `  F ) " { W } )  <->  x  e.  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) ) )
107106eqrdv 2449 . . 3  |-  ( ph  ->  ( `' ( O `
 F ) " { W } )  =  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )
108107fveq2d 5869 . 2  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  =  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) ) )
109 fvex 5875 . . . . . . . . 9  |-  ( O `
 ( F (quot1p `  R ) G ) )  e.  _V
110109cnvex 6740 . . . . . . . 8  |-  `' ( O `  ( F (quot1p `  R ) G ) )  e.  _V
111 imaexg 6730 . . . . . . . 8  |-  ( `' ( O `  ( F (quot1p `  R ) G ) )  e.  _V  ->  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  _V )
112110, 111mp1i 13 . . . . . . 7  |-  ( ph  ->  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  _V )
113 fta1glem.3 . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
114 fta1glem.6 . . . . . . . . 9  |-  ( ph  ->  A. g  e.  B  ( ( D `  g )  =  N  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) ) )
115 fta1g.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  P )
116 fta1glem.4 . . . . . . . . . 10  |-  ( ph  ->  ( D `  F
)  =  ( N  +  1 ) )
11713, 16, 44, 12, 37, 115, 5, 19, 3, 28, 29, 30, 31, 113, 116, 1fta1glem1 23116 . . . . . . . . 9  |-  ( ph  ->  ( D `  ( F (quot1p `  R ) G ) )  =  N )
118 fveq2 5865 . . . . . . . . . . . 12  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( D `  g )  =  ( D `  ( F (quot1p `  R ) G ) ) )
119118eqeq1d 2453 . . . . . . . . . . 11  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( ( D `
 g )  =  N  <->  ( D `  ( F (quot1p `  R ) G ) )  =  N ) )
120 fveq2 5865 . . . . . . . . . . . . . . 15  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( O `  g )  =  ( O `  ( F (quot1p `  R ) G ) ) )
121120cnveqd 5010 . . . . . . . . . . . . . 14  |-  ( g  =  ( F (quot1p `  R ) G )  ->  `' ( O `
 g )  =  `' ( O `  ( F (quot1p `  R ) G ) ) )
122121imaeq1d 5167 . . . . . . . . . . . . 13  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( `' ( O `  g )
" { W }
)  =  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )
123122fveq2d 5869 . . . . . . . . . . . 12  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( # `  ( `' ( O `  g ) " { W } ) )  =  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) ) )
124123, 118breq12d 4415 . . . . . . . . . . 11  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( ( # `  ( `' ( O `
 g ) " { W } ) )  <_  ( D `  g )  <->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) ) )
125119, 124imbi12d 322 . . . . . . . . . 10  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( ( ( D `  g )  =  N  ->  ( # `
 ( `' ( O `  g )
" { W }
) )  <_  ( D `  g )
)  <->  ( ( D `
 ( F (quot1p `  R ) G ) )  =  N  -> 
( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) ) ) )
126125rspcv 3146 . . . . . . . . 9  |-  ( ( F (quot1p `  R ) G )  e.  B  -> 
( A. g  e.  B  ( ( D `
 g )  =  N  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) )  ->  (
( D `  ( F (quot1p `  R ) G ) )  =  N  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) ) ) )
12757, 114, 117, 126syl3c 63 . . . . . . . 8  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) )
128127, 117breqtrd 4427 . . . . . . 7  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_  N )
129 hashbnd 12521 . . . . . . 7  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  _V  /\  N  e.  NN0  /\  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_  N )  ->  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin )
130112, 113, 128, 129syl3anc 1268 . . . . . 6  |-  ( ph  ->  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin )
131 snfi 7650 . . . . . 6  |-  { T }  e.  Fin
132 unfi 7838 . . . . . 6  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin  /\ 
{ T }  e.  Fin )  ->  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  e.  Fin )
133130, 131, 132sylancl 668 . . . . 5  |-  ( ph  ->  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  e.  Fin )
134 hashcl 12538 . . . . 5  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  e.  Fin  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  e. 
NN0 )
135133, 134syl 17 . . . 4  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  e. 
NN0 )
136135nn0red 10926 . . 3  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  e.  RR )
137 hashcl 12538 . . . . . 6  |-  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e. 
NN0 )
138130, 137syl 17 . . . . 5  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e. 
NN0 )
139138nn0red 10926 . . . 4  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e.  RR )
140 peano2re 9806 . . . 4  |-  ( (
# `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e.  RR  ->  ( ( # `
 ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  e.  RR )
141139, 140syl 17 . . 3  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  e.  RR )
142 peano2nn0 10910 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
143113, 142syl 17 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
144116, 143eqeltrd 2529 . . . 4  |-  ( ph  ->  ( D `  F
)  e.  NN0 )
145144nn0red 10926 . . 3  |-  ( ph  ->  ( D `  F
)  e.  RR )
146 hashun2 12562 . . . . 5  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin  /\ 
{ T }  e.  Fin )  ->  ( # `  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  ( # `  { T } ) ) )
147130, 131, 146sylancl 668 . . . 4  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  ( # `  { T } ) ) )
148 hashsng 12549 . . . . . 6  |-  ( T  e.  ( `' ( O `  F )
" { W }
)  ->  ( # `  { T } )  =  1 )
1491, 148syl 17 . . . . 5  |-  ( ph  ->  ( # `  { T } )  =  1 )
150149oveq2d 6306 . . . 4  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  ( # `  { T } ) )  =  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 ) )
151147, 150breqtrd 4427 . . 3  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 ) )
152113nn0red 10926 . . . . 5  |-  ( ph  ->  N  e.  RR )
153 1red 9658 . . . . 5  |-  ( ph  ->  1  e.  RR )
154139, 152, 153, 128leadd1dd 10227 . . . 4  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  <_  ( N  +  1 ) )
155154, 116breqtrrd 4429 . . 3  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  <_  ( D `  F )
)
156136, 141, 145, 151, 155letrd 9792 . 2  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( D `  F
) )
157108, 156eqbrtrd 4423 1  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  <_ 
( D `  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1444    e. wcel 1887   A.wral 2737   _Vcvv 3045    u. cun 3402   {csn 3968   class class class wbr 4402   `'ccnv 4833   "cima 4837    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290    oFcof 6529   Fincfn 7569   RRcr 9538   1c1 9540    + caddc 9542    <_ cle 9676   NN0cn0 10869   #chash 12515   Basecbs 15121   .rcmulr 15191   0gc0g 15338    ^s cpws 15345   -gcsg 16671   Ringcrg 17780   CRingccrg 17781   ||rcdsr 17866   RingHom crh 17940  NzRingcnzr 18481  Domncdomn 18504  IDomncidom 18505  algSccascl 18535  var1cv1 18769  Poly1cpl1 18770  eval1ce1 18903   deg1 cdg1 23003  Monic1pcmn1 23074  Unic1pcuc1p 23075  quot1pcq1p 23076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-ofr 6532  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-tpos 6973  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-sup 7956  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-fz 11785  df-fzo 11916  df-seq 12214  df-hash 12516  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-0g 15340  df-gsum 15341  df-prds 15346  df-pws 15348  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-mhm 16582  df-submnd 16583  df-grp 16673  df-minusg 16674  df-sbg 16675  df-mulg 16676  df-subg 16814  df-ghm 16881  df-cntz 16971  df-cmn 17432  df-abl 17433  df-mgp 17724  df-ur 17736  df-srg 17740  df-ring 17782  df-cring 17783  df-oppr 17851  df-dvdsr 17869  df-unit 17870  df-invr 17900  df-rnghom 17943  df-subrg 18006  df-lmod 18093  df-lss 18156  df-lsp 18195  df-nzr 18482  df-rlreg 18507  df-domn 18508  df-idom 18509  df-assa 18536  df-asp 18537  df-ascl 18538  df-psr 18580  df-mvr 18581  df-mpl 18582  df-opsr 18584  df-evls 18729  df-evl 18730  df-psr1 18773  df-vr1 18774  df-ply1 18775  df-coe1 18776  df-evl1 18905  df-cnfld 18971  df-mdeg 23004  df-deg1 23005  df-mon1 23080  df-uc1p 23081  df-q1p 23082  df-r1p 23083
This theorem is referenced by:  fta1g  23118
  Copyright terms: Public domain W3C validator