MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem2 Structured version   Unicode version

Theorem fta1glem2 22302
Description: Lemma for fta1g 22303. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p  |-  P  =  (Poly1 `  R )
fta1g.b  |-  B  =  ( Base `  P
)
fta1g.d  |-  D  =  ( deg1  `  R )
fta1g.o  |-  O  =  (eval1 `  R )
fta1g.w  |-  W  =  ( 0g `  R
)
fta1g.z  |-  .0.  =  ( 0g `  P )
fta1g.1  |-  ( ph  ->  R  e. IDomn )
fta1g.2  |-  ( ph  ->  F  e.  B )
fta1glem.k  |-  K  =  ( Base `  R
)
fta1glem.x  |-  X  =  (var1 `  R )
fta1glem.m  |-  .-  =  ( -g `  P )
fta1glem.a  |-  A  =  (algSc `  P )
fta1glem.g  |-  G  =  ( X  .-  ( A `  T )
)
fta1glem.3  |-  ( ph  ->  N  e.  NN0 )
fta1glem.4  |-  ( ph  ->  ( D `  F
)  =  ( N  +  1 ) )
fta1glem.5  |-  ( ph  ->  T  e.  ( `' ( O `  F
) " { W } ) )
fta1glem.6  |-  ( ph  ->  A. g  e.  B  ( ( D `  g )  =  N  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) ) )
Assertion
Ref Expression
fta1glem2  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  <_ 
( D `  F
) )
Distinct variable groups:    B, g    D, g    g, F    g, N    g, O    g, G    P, g    R, g    g, W
Allowed substitution hints:    ph( g)    A( g)    T( g)    K( g)    .- ( g)    X( g)    .0. ( g)

Proof of Theorem fta1glem2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fta1glem.5 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  T  e.  ( `' ( O `  F
) " { W } ) )
2 eqid 2467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  ^s  K )  =  ( R  ^s  K )
3 fta1glem.k . . . . . . . . . . . . . . . . . . . . 21  |-  K  =  ( Base `  R
)
4 eqid 2467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
5 fta1g.1 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  R  e. IDomn )
6 fvex 5874 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Base `  R )  e.  _V
73, 6eqeltri 2551 . . . . . . . . . . . . . . . . . . . . . 22  |-  K  e. 
_V
87a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  K  e.  _V )
9 isidom 17724 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
109simplbi 460 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( R  e. IDomn  ->  R  e.  CRing )
115, 10syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  R  e.  CRing )
12 fta1g.o . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  O  =  (eval1 `  R )
13 fta1g.p . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  P  =  (Poly1 `  R )
1412, 13, 2, 3evl1rhm 18139 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
1511, 14syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
16 fta1g.b . . . . . . . . . . . . . . . . . . . . . . . 24  |-  B  =  ( Base `  P
)
1716, 4rhmf 17159 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
1815, 17syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
19 fta1g.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  F  e.  B )
2018, 19ffvelrnd 6020 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( O `  F
)  e.  ( Base `  ( R  ^s  K ) ) )
212, 3, 4, 5, 8, 20pwselbas 14740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( O `  F
) : K --> K )
22 ffn 5729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( O `  F ) : K --> K  -> 
( O `  F
)  Fn  K )
2321, 22syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( O `  F
)  Fn  K )
24 fniniseg 6000 . . . . . . . . . . . . . . . . . . 19  |-  ( ( O `  F )  Fn  K  ->  ( T  e.  ( `' ( O `  F )
" { W }
)  <->  ( T  e.  K  /\  ( ( O `  F ) `
 T )  =  W ) ) )
2523, 24syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( T  e.  ( `' ( O `  F ) " { W } )  <->  ( T  e.  K  /\  (
( O `  F
) `  T )  =  W ) ) )
261, 25mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( T  e.  K  /\  ( ( O `  F ) `  T
)  =  W ) )
2726simprd 463 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( O `  F ) `  T
)  =  W )
28 fta1glem.x . . . . . . . . . . . . . . . . 17  |-  X  =  (var1 `  R )
29 fta1glem.m . . . . . . . . . . . . . . . . 17  |-  .-  =  ( -g `  P )
30 fta1glem.a . . . . . . . . . . . . . . . . 17  |-  A  =  (algSc `  P )
31 fta1glem.g . . . . . . . . . . . . . . . . 17  |-  G  =  ( X  .-  ( A `  T )
)
329simprbi 464 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. IDomn  ->  R  e. Domn )
33 domnnzr 17715 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. Domn  ->  R  e. NzRing )
3432, 33syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( R  e. IDomn  ->  R  e. NzRing )
355, 34syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  R  e. NzRing )
3626simpld 459 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  T  e.  K )
37 fta1g.w . . . . . . . . . . . . . . . . 17  |-  W  =  ( 0g `  R
)
38 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( ||r `  P
)  =  ( ||r `  P
)
3913, 16, 3, 28, 29, 30, 31, 12, 35, 11, 36, 19, 37, 38facth1 22300 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( G ( ||r `  P
) F  <->  ( ( O `  F ) `  T )  =  W ) )
4027, 39mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G ( ||r `
 P ) F )
41 nzrrng 17691 . . . . . . . . . . . . . . . . 17  |-  ( R  e. NzRing  ->  R  e.  Ring )
4235, 41syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  R  e.  Ring )
43 eqid 2467 . . . . . . . . . . . . . . . . . . 19  |-  (Monic1p `  R
)  =  (Monic1p `  R
)
44 fta1g.d . . . . . . . . . . . . . . . . . . 19  |-  D  =  ( deg1  `  R )
4513, 16, 3, 28, 29, 30, 31, 12, 35, 11, 36, 43, 44, 37ply1remlem 22298 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G  e.  (Monic1p `  R )  /\  ( D `  G )  =  1  /\  ( `' ( O `  G ) " { W } )  =  { T } ) )
4645simp1d 1008 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G  e.  (Monic1p `  R
) )
47 eqid 2467 . . . . . . . . . . . . . . . . . 18  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
4847, 43mon1puc1p 22286 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  G  e.  (Monic1p `  R ) )  ->  G  e.  (Unic1p `  R ) )
4942, 46, 48syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e.  (Unic1p `  R
) )
50 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( .r
`  P )  =  ( .r `  P
)
51 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  (quot1p `  R
)  =  (quot1p `  R
)
5213, 38, 16, 47, 50, 51dvdsq1p 22296 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( G (
||r `  P ) F  <->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) )
5342, 19, 49, 52syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G ( ||r `  P
) F  <->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) )
5440, 53mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) )
5554fveq2d 5868 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  F
)  =  ( O `
 ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) ) )
5651, 13, 16, 47q1pcl 22291 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( F (quot1p `  R ) G )  e.  B )
5742, 19, 49, 56syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F (quot1p `  R
) G )  e.  B )
5813, 16, 43mon1pcl 22280 . . . . . . . . . . . . . . 15  |-  ( G  e.  (Monic1p `  R )  ->  G  e.  B )
5946, 58syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  B )
60 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( .r
`  ( R  ^s  K
) )  =  ( .r `  ( R  ^s  K ) )
6116, 50, 60rhmmul 17160 . . . . . . . . . . . . . 14  |-  ( ( O  e.  ( P RingHom 
( R  ^s  K ) )  /\  ( F (quot1p `  R ) G )  e.  B  /\  G  e.  B )  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  =  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) ) )
6215, 57, 59, 61syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  =  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) ) )
6318, 57ffvelrnd 6020 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) )  e.  (
Base `  ( R  ^s  K ) ) )
6418, 59ffvelrnd 6020 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( O `  G
)  e.  ( Base `  ( R  ^s  K ) ) )
65 eqid 2467 . . . . . . . . . . . . . 14  |-  ( .r
`  R )  =  ( .r `  R
)
662, 4, 5, 8, 63, 64, 65, 60pwsmulrval 14742 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) )  =  ( ( O `
 ( F (quot1p `  R ) G ) )  oF ( .r `  R ) ( O `  G
) ) )
6755, 62, 663eqtrd 2512 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  F
)  =  ( ( O `  ( F (quot1p `  R ) G ) )  oF ( .r `  R
) ( O `  G ) ) )
6867fveq1d 5866 . . . . . . . . . . 11  |-  ( ph  ->  ( ( O `  F ) `  x
)  =  ( ( ( O `  ( F (quot1p `  R ) G ) )  oF ( .r `  R
) ( O `  G ) ) `  x ) )
6968adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  F
) `  x )  =  ( ( ( O `  ( F (quot1p `  R ) G ) )  oF ( .r `  R
) ( O `  G ) ) `  x ) )
702, 3, 4, 5, 8, 63pwselbas 14740 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) ) : K --> K )
71 ffn 5729 . . . . . . . . . . . . 13  |-  ( ( O `  ( F (quot1p `  R ) G ) ) : K --> K  ->  ( O `  ( F (quot1p `  R ) G ) )  Fn  K
)
7270, 71syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) )  Fn  K
)
7372adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  ( O `  ( F
(quot1p `
 R ) G ) )  Fn  K
)
742, 3, 4, 5, 8, 64pwselbas 14740 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  G
) : K --> K )
75 ffn 5729 . . . . . . . . . . . . 13  |-  ( ( O `  G ) : K --> K  -> 
( O `  G
)  Fn  K )
7674, 75syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  G
)  Fn  K )
7776adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  ( O `  G )  Fn  K )
787a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  K  e.  _V )
79 simpr 461 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  x  e.  K )
80 fnfvof 6535 . . . . . . . . . . 11  |-  ( ( ( ( O `  ( F (quot1p `  R ) G ) )  Fn  K  /\  ( O `  G
)  Fn  K )  /\  ( K  e. 
_V  /\  x  e.  K ) )  -> 
( ( ( O `
 ( F (quot1p `  R ) G ) )  oF ( .r `  R ) ( O `  G
) ) `  x
)  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) ) )
8173, 77, 78, 79, 80syl22anc 1229 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  ( F (quot1p `  R ) G ) )  oF ( .r `  R
) ( O `  G ) ) `  x )  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) ) )
8269, 81eqtrd 2508 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  F
) `  x )  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) ) )
8382eqeq1d 2469 . . . . . . . 8  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  F ) `  x
)  =  W  <->  ( (
( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) )  =  W ) )
845, 32syl 16 . . . . . . . . . 10  |-  ( ph  ->  R  e. Domn )
8584adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  R  e. Domn )
8670ffvelrnda 6019 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  e.  K )
8774ffvelrnda 6019 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  G
) `  x )  e.  K )
883, 65, 37domneq0 17717 . . . . . . . . 9  |-  ( ( R  e. Domn  /\  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  e.  K  /\  ( ( O `  G ) `  x
)  e.  K )  ->  ( ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) )  =  W  <->  ( (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) )
8985, 86, 87, 88syl3anc 1228 . . . . . . . 8  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( ( O `
 ( F (quot1p `  R ) G ) ) `  x ) ( .r `  R
) ( ( O `
 G ) `  x ) )  =  W  <->  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) )
9083, 89bitrd 253 . . . . . . 7  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  F ) `  x
)  =  W  <->  ( (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) )
9190pm5.32da 641 . . . . . 6  |-  ( ph  ->  ( ( x  e.  K  /\  ( ( O `  F ) `
 x )  =  W )  <->  ( x  e.  K  /\  (
( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) ) )
92 andi 865 . . . . . 6  |-  ( ( x  e.  K  /\  ( ( ( O `
 ( F (quot1p `  R ) G ) ) `  x )  =  W  \/  (
( O `  G
) `  x )  =  W ) )  <->  ( (
x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) )
9391, 92syl6bb 261 . . . . 5  |-  ( ph  ->  ( ( x  e.  K  /\  ( ( O `  F ) `
 x )  =  W )  <->  ( (
x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) ) )
94 fniniseg 6000 . . . . . 6  |-  ( ( O `  F )  Fn  K  ->  (
x  e.  ( `' ( O `  F
) " { W } )  <->  ( x  e.  K  /\  (
( O `  F
) `  x )  =  W ) ) )
9523, 94syl 16 . . . . 5  |-  ( ph  ->  ( x  e.  ( `' ( O `  F ) " { W } )  <->  ( x  e.  K  /\  (
( O `  F
) `  x )  =  W ) ) )
96 elun 3645 . . . . . 6  |-  ( x  e.  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  <->  ( x  e.  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  \/  x  e.  { T } ) )
97 fniniseg 6000 . . . . . . . 8  |-  ( ( O `  ( F (quot1p `  R ) G ) )  Fn  K  ->  ( x  e.  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  <->  ( x  e.  K  /\  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W ) ) )
9872, 97syl 16 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  <->  ( x  e.  K  /\  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W ) ) )
9945simp3d 1010 . . . . . . . . 9  |-  ( ph  ->  ( `' ( O `
 G ) " { W } )  =  { T } )
10099eleq2d 2537 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( O `  G ) " { W } )  <->  x  e.  { T } ) )
101 fniniseg 6000 . . . . . . . . 9  |-  ( ( O `  G )  Fn  K  ->  (
x  e.  ( `' ( O `  G
) " { W } )  <->  ( x  e.  K  /\  (
( O `  G
) `  x )  =  W ) ) )
10276, 101syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( O `  G ) " { W } )  <->  ( x  e.  K  /\  (
( O `  G
) `  x )  =  W ) ) )
103100, 102bitr3d 255 . . . . . . 7  |-  ( ph  ->  ( x  e.  { T }  <->  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) )
10498, 103orbi12d 709 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  \/  x  e.  { T } )  <-> 
( ( x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) ) )
10596, 104syl5bb 257 . . . . 5  |-  ( ph  ->  ( x  e.  ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  <->  ( (
x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) ) )
10693, 95, 1053bitr4d 285 . . . 4  |-  ( ph  ->  ( x  e.  ( `' ( O `  F ) " { W } )  <->  x  e.  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) ) )
107106eqrdv 2464 . . 3  |-  ( ph  ->  ( `' ( O `
 F ) " { W } )  =  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )
108107fveq2d 5868 . 2  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  =  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) ) )
109 fvex 5874 . . . . . . . . 9  |-  ( O `
 ( F (quot1p `  R ) G ) )  e.  _V
110109cnvex 6728 . . . . . . . 8  |-  `' ( O `  ( F (quot1p `  R ) G ) )  e.  _V
111 imaexg 6718 . . . . . . . 8  |-  ( `' ( O `  ( F (quot1p `  R ) G ) )  e.  _V  ->  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  _V )
112110, 111mp1i 12 . . . . . . 7  |-  ( ph  ->  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  _V )
113 fta1glem.3 . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
114 fta1glem.6 . . . . . . . . 9  |-  ( ph  ->  A. g  e.  B  ( ( D `  g )  =  N  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) ) )
115 fta1g.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  P )
116 fta1glem.4 . . . . . . . . . 10  |-  ( ph  ->  ( D `  F
)  =  ( N  +  1 ) )
11713, 16, 44, 12, 37, 115, 5, 19, 3, 28, 29, 30, 31, 113, 116, 1fta1glem1 22301 . . . . . . . . 9  |-  ( ph  ->  ( D `  ( F (quot1p `  R ) G ) )  =  N )
118 fveq2 5864 . . . . . . . . . . . 12  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( D `  g )  =  ( D `  ( F (quot1p `  R ) G ) ) )
119118eqeq1d 2469 . . . . . . . . . . 11  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( ( D `
 g )  =  N  <->  ( D `  ( F (quot1p `  R ) G ) )  =  N ) )
120 fveq2 5864 . . . . . . . . . . . . . . 15  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( O `  g )  =  ( O `  ( F (quot1p `  R ) G ) ) )
121120cnveqd 5176 . . . . . . . . . . . . . 14  |-  ( g  =  ( F (quot1p `  R ) G )  ->  `' ( O `
 g )  =  `' ( O `  ( F (quot1p `  R ) G ) ) )
122121imaeq1d 5334 . . . . . . . . . . . . 13  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( `' ( O `  g )
" { W }
)  =  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )
123122fveq2d 5868 . . . . . . . . . . . 12  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( # `  ( `' ( O `  g ) " { W } ) )  =  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) ) )
124123, 118breq12d 4460 . . . . . . . . . . 11  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( ( # `  ( `' ( O `
 g ) " { W } ) )  <_  ( D `  g )  <->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) ) )
125119, 124imbi12d 320 . . . . . . . . . 10  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( ( ( D `  g )  =  N  ->  ( # `
 ( `' ( O `  g )
" { W }
) )  <_  ( D `  g )
)  <->  ( ( D `
 ( F (quot1p `  R ) G ) )  =  N  -> 
( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) ) ) )
126125rspcv 3210 . . . . . . . . 9  |-  ( ( F (quot1p `  R ) G )  e.  B  -> 
( A. g  e.  B  ( ( D `
 g )  =  N  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) )  ->  (
( D `  ( F (quot1p `  R ) G ) )  =  N  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) ) ) )
12757, 114, 117, 126syl3c 61 . . . . . . . 8  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) )
128127, 117breqtrd 4471 . . . . . . 7  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_  N )
129 hashbnd 12375 . . . . . . 7  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  _V  /\  N  e.  NN0  /\  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_  N )  ->  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin )
130112, 113, 128, 129syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin )
131 snfi 7593 . . . . . 6  |-  { T }  e.  Fin
132 unfi 7783 . . . . . 6  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin  /\ 
{ T }  e.  Fin )  ->  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  e.  Fin )
133130, 131, 132sylancl 662 . . . . 5  |-  ( ph  ->  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  e.  Fin )
134 hashcl 12392 . . . . 5  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  e.  Fin  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  e. 
NN0 )
135133, 134syl 16 . . . 4  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  e. 
NN0 )
136135nn0red 10849 . . 3  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  e.  RR )
137 hashcl 12392 . . . . . 6  |-  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e. 
NN0 )
138130, 137syl 16 . . . . 5  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e. 
NN0 )
139138nn0red 10849 . . . 4  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e.  RR )
140 peano2re 9748 . . . 4  |-  ( (
# `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e.  RR  ->  ( ( # `
 ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  e.  RR )
141139, 140syl 16 . . 3  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  e.  RR )
142 peano2nn0 10832 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
143113, 142syl 16 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
144116, 143eqeltrd 2555 . . . 4  |-  ( ph  ->  ( D `  F
)  e.  NN0 )
145144nn0red 10849 . . 3  |-  ( ph  ->  ( D `  F
)  e.  RR )
146 hashun2 12415 . . . . 5  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin  /\ 
{ T }  e.  Fin )  ->  ( # `  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  ( # `  { T } ) ) )
147130, 131, 146sylancl 662 . . . 4  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  ( # `  { T } ) ) )
148 hashsng 12402 . . . . . 6  |-  ( T  e.  ( `' ( O `  F )
" { W }
)  ->  ( # `  { T } )  =  1 )
1491, 148syl 16 . . . . 5  |-  ( ph  ->  ( # `  { T } )  =  1 )
150149oveq2d 6298 . . . 4  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  ( # `  { T } ) )  =  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 ) )
151147, 150breqtrd 4471 . . 3  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 ) )
152113nn0red 10849 . . . . 5  |-  ( ph  ->  N  e.  RR )
153 1red 9607 . . . . 5  |-  ( ph  ->  1  e.  RR )
154139, 152, 153, 128leadd1dd 10162 . . . 4  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  <_  ( N  +  1 ) )
155154, 116breqtrrd 4473 . . 3  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  <_  ( D `  F )
)
156136, 141, 145, 151, 155letrd 9734 . 2  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( D `  F
) )
157108, 156eqbrtrd 4467 1  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  <_ 
( D `  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    u. cun 3474   {csn 4027   class class class wbr 4447   `'ccnv 4998   "cima 5002    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282    oFcof 6520   Fincfn 7513   RRcr 9487   1c1 9489    + caddc 9491    <_ cle 9625   NN0cn0 10791   #chash 12369   Basecbs 14486   .rcmulr 14552   0gc0g 14691    ^s cpws 14698   -gcsg 15726   Ringcrg 16986   CRingccrg 16987   ||rcdsr 17071   RingHom crh 17145  NzRingcnzr 17687  Domncdomn 17699  IDomncidom 17700  algSccascl 17731  var1cv1 17986  Poly1cpl1 17987  eval1ce1 18122   deg1 cdg1 22187  Monic1pcmn1 22261  Unic1pcuc1p 22262  quot1pcq1p 22263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-ofr 6523  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-fzo 11789  df-seq 12072  df-hash 12370  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-0g 14693  df-gsum 14694  df-prds 14699  df-pws 14701  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-mhm 15777  df-submnd 15778  df-grp 15858  df-minusg 15859  df-sbg 15860  df-mulg 15861  df-subg 15993  df-ghm 16060  df-cntz 16150  df-cmn 16596  df-abl 16597  df-mgp 16932  df-ur 16944  df-srg 16948  df-rng 16988  df-cring 16989  df-oppr 17056  df-dvdsr 17074  df-unit 17075  df-invr 17105  df-rnghom 17148  df-subrg 17210  df-lmod 17297  df-lss 17362  df-lsp 17401  df-nzr 17688  df-rlreg 17702  df-domn 17703  df-idom 17704  df-assa 17732  df-asp 17733  df-ascl 17734  df-psr 17776  df-mvr 17777  df-mpl 17778  df-opsr 17780  df-evls 17942  df-evl 17943  df-psr1 17990  df-vr1 17991  df-ply1 17992  df-coe1 17993  df-evl1 18124  df-cnfld 18192  df-mdeg 22188  df-deg1 22189  df-mon1 22266  df-uc1p 22267  df-q1p 22268  df-r1p 22269
This theorem is referenced by:  fta1g  22303
  Copyright terms: Public domain W3C validator