MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1g Structured version   Unicode version

Theorem fta1g 22296
Description: The one-sided fundamental theorem of algebra. A polynomial of degree  n has at most  n roots. Unlike the real fundamental theorem fta 23074, which is only true in  CC and other algebraically closed fields, this is true in any integral domain. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p  |-  P  =  (Poly1 `  R )
fta1g.b  |-  B  =  ( Base `  P
)
fta1g.d  |-  D  =  ( deg1  `  R )
fta1g.o  |-  O  =  (eval1 `  R )
fta1g.w  |-  W  =  ( 0g `  R
)
fta1g.z  |-  .0.  =  ( 0g `  P )
fta1g.1  |-  ( ph  ->  R  e. IDomn )
fta1g.2  |-  ( ph  ->  F  e.  B )
fta1g.3  |-  ( ph  ->  F  =/=  .0.  )
Assertion
Ref Expression
fta1g  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  <_ 
( D `  F
) )

Proof of Theorem fta1g
Dummy variables  f 
d  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2460 . 2  |-  ( D `
 F )  =  ( D `  F
)
2 fta1g.2 . . 3  |-  ( ph  ->  F  e.  B )
3 fta1g.1 . . . . . 6  |-  ( ph  ->  R  e. IDomn )
4 isidom 17717 . . . . . . 7  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
54simplbi 460 . . . . . 6  |-  ( R  e. IDomn  ->  R  e.  CRing )
6 crngrng 16989 . . . . . 6  |-  ( R  e.  CRing  ->  R  e.  Ring )
73, 5, 63syl 20 . . . . 5  |-  ( ph  ->  R  e.  Ring )
8 fta1g.3 . . . . 5  |-  ( ph  ->  F  =/=  .0.  )
9 fta1g.d . . . . . 6  |-  D  =  ( deg1  `  R )
10 fta1g.p . . . . . 6  |-  P  =  (Poly1 `  R )
11 fta1g.z . . . . . 6  |-  .0.  =  ( 0g `  P )
12 fta1g.b . . . . . 6  |-  B  =  ( Base `  P
)
139, 10, 11, 12deg1nn0cl 22216 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( D `  F )  e.  NN0 )
147, 2, 8, 13syl3anc 1223 . . . 4  |-  ( ph  ->  ( D `  F
)  e.  NN0 )
15 eqeq2 2475 . . . . . . . 8  |-  ( x  =  0  ->  (
( D `  f
)  =  x  <->  ( D `  f )  =  0 ) )
1615imbi1d 317 . . . . . . 7  |-  ( x  =  0  ->  (
( ( D `  f )  =  x  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  <->  ( ( D `  f )  =  0  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
1716ralbidv 2896 . . . . . 6  |-  ( x  =  0  ->  ( A. f  e.  B  ( ( D `  f )  =  x  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  <->  A. f  e.  B  ( ( D `  f )  =  0  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
1817imbi2d 316 . . . . 5  |-  ( x  =  0  ->  (
( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f
)  =  x  -> 
( # `  ( `' ( O `  f
) " { W } ) )  <_ 
( D `  f
) ) )  <->  ( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f )  =  0  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) ) ) ) )
19 eqeq2 2475 . . . . . . . 8  |-  ( x  =  d  ->  (
( D `  f
)  =  x  <->  ( D `  f )  =  d ) )
2019imbi1d 317 . . . . . . 7  |-  ( x  =  d  ->  (
( ( D `  f )  =  x  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  <->  ( ( D `  f )  =  d  ->  ( # `  ( `' ( O `
 f ) " { W } ) )  <_  ( D `  f ) ) ) )
2120ralbidv 2896 . . . . . 6  |-  ( x  =  d  ->  ( A. f  e.  B  ( ( D `  f )  =  x  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  <->  A. f  e.  B  ( ( D `  f )  =  d  ->  ( # `  ( `' ( O `
 f ) " { W } ) )  <_  ( D `  f ) ) ) )
2221imbi2d 316 . . . . 5  |-  ( x  =  d  ->  (
( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f
)  =  x  -> 
( # `  ( `' ( O `  f
) " { W } ) )  <_ 
( D `  f
) ) )  <->  ( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f )  =  d  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) ) ) ) )
23 eqeq2 2475 . . . . . . . 8  |-  ( x  =  ( d  +  1 )  ->  (
( D `  f
)  =  x  <->  ( D `  f )  =  ( d  +  1 ) ) )
2423imbi1d 317 . . . . . . 7  |-  ( x  =  ( d  +  1 )  ->  (
( ( D `  f )  =  x  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  <->  ( ( D `  f )  =  ( d  +  1 )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
2524ralbidv 2896 . . . . . 6  |-  ( x  =  ( d  +  1 )  ->  ( A. f  e.  B  ( ( D `  f )  =  x  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  <->  A. f  e.  B  ( ( D `  f )  =  ( d  +  1 )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
2625imbi2d 316 . . . . 5  |-  ( x  =  ( d  +  1 )  ->  (
( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f
)  =  x  -> 
( # `  ( `' ( O `  f
) " { W } ) )  <_ 
( D `  f
) ) )  <->  ( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f )  =  ( d  +  1 )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) ) ) ) )
27 eqeq2 2475 . . . . . . . 8  |-  ( x  =  ( D `  F )  ->  (
( D `  f
)  =  x  <->  ( D `  f )  =  ( D `  F ) ) )
2827imbi1d 317 . . . . . . 7  |-  ( x  =  ( D `  F )  ->  (
( ( D `  f )  =  x  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  <->  ( ( D `  f )  =  ( D `  F )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
2928ralbidv 2896 . . . . . 6  |-  ( x  =  ( D `  F )  ->  ( A. f  e.  B  ( ( D `  f )  =  x  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  <->  A. f  e.  B  ( ( D `  f )  =  ( D `  F )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
3029imbi2d 316 . . . . 5  |-  ( x  =  ( D `  F )  ->  (
( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f
)  =  x  -> 
( # `  ( `' ( O `  f
) " { W } ) )  <_ 
( D `  f
) ) )  <->  ( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f )  =  ( D `  F )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) ) ) ) )
31 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( D `  f )  =  0 )
32 0nn0 10799 . . . . . . . . . . . . . 14  |-  0  e.  NN0
3331, 32syl6eqel 2556 . . . . . . . . . . . . 13  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( D `  f )  e.  NN0 )
345, 6syl 16 . . . . . . . . . . . . . 14  |-  ( R  e. IDomn  ->  R  e.  Ring )
35 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( f  e.  B  /\  ( D `  f )  =  0 )  -> 
f  e.  B )
369, 10, 11, 12deg1nn0clb 22218 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  f  e.  B )  ->  (
f  =/=  .0.  <->  ( D `  f )  e.  NN0 ) )
3734, 35, 36syl2an 477 . . . . . . . . . . . . 13  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( f  =/= 
.0. 
<->  ( D `  f
)  e.  NN0 )
)
3833, 37mpbird 232 . . . . . . . . . . . 12  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  f  =/=  .0.  )
39 simplrr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( D `  f
)  =  0 )
40 0le0 10614 . . . . . . . . . . . . . . . . 17  |-  0  <_  0
4139, 40syl6eqbr 4477 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( D `  f
)  <_  0 )
4234ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  ->  R  e.  Ring )
43 simplrl 759 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
f  e.  B )
44 eqid 2460 . . . . . . . . . . . . . . . . . 18  |-  (algSc `  P )  =  (algSc `  P )
459, 10, 12, 44deg1le0 22240 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  f  e.  B )  ->  (
( D `  f
)  <_  0  <->  f  =  ( (algSc `  P ) `  ( (coe1 `  f ) ` 
0 ) ) ) )
4642, 43, 45syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( ( D `  f )  <_  0  <->  f  =  ( (algSc `  P ) `  (
(coe1 `  f ) ` 
0 ) ) ) )
4741, 46mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
f  =  ( (algSc `  P ) `  (
(coe1 `  f ) ` 
0 ) ) )
4847fveq2d 5861 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( O `  f
)  =  ( O `
 ( (algSc `  P ) `  (
(coe1 `  f ) ` 
0 ) ) ) )
495adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  R  e.  CRing )
5049adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  ->  R  e.  CRing )
51 eqid 2460 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (coe1 `  f
)  =  (coe1 `  f
)
52 eqid 2460 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Base `  R )  =  (
Base `  R )
5351, 12, 10, 52coe1f 18014 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  e.  B  ->  (coe1 `  f ) : NN0 --> (
Base `  R )
)
5443, 53syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
(coe1 `  f ) : NN0 --> ( Base `  R
) )
55 ffvelrn 6010 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (coe1 `  f ) : NN0 --> ( Base `  R
)  /\  0  e.  NN0 )  ->  ( (coe1 `  f ) `  0
)  e.  ( Base `  R ) )
5654, 32, 55sylancl 662 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( (coe1 `  f ) ` 
0 )  e.  (
Base `  R )
)
57 fta1g.o . . . . . . . . . . . . . . . . . . . . 21  |-  O  =  (eval1 `  R )
5857, 10, 52, 44evl1sca 18134 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  CRing  /\  (
(coe1 `  f ) ` 
0 )  e.  (
Base `  R )
)  ->  ( O `  ( (algSc `  P
) `  ( (coe1 `  f ) `  0
) ) )  =  ( ( Base `  R
)  X.  { ( (coe1 `  f ) ` 
0 ) } ) )
5950, 56, 58syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( O `  (
(algSc `  P ) `  ( (coe1 `  f ) ` 
0 ) ) )  =  ( ( Base `  R )  X.  {
( (coe1 `  f ) ` 
0 ) } ) )
6048, 59eqtrd 2501 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( O `  f
)  =  ( (
Base `  R )  X.  { ( (coe1 `  f
) `  0 ) } ) )
6160fveq1d 5859 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( ( O `  f ) `  x
)  =  ( ( ( Base `  R
)  X.  { ( (coe1 `  f ) ` 
0 ) } ) `
 x ) )
62 eqid 2460 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  ^s  ( Base `  R
) )  =  ( R  ^s  ( Base `  R
) )
63 eqid 2460 . . . . . . . . . . . . . . . . . . . 20  |-  ( Base `  ( R  ^s  ( Base `  R ) ) )  =  ( Base `  ( R  ^s  ( Base `  R
) ) )
64 simpl 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  R  e. IDomn )
65 fvex 5867 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Base `  R )  e.  _V
6665a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( Base `  R
)  e.  _V )
6757, 10, 62, 52evl1rhm 18132 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  ( Base `  R ) ) ) )
6812, 63rhmf 17152 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( O  e.  ( P RingHom  ( R  ^s  ( Base `  R
) ) )  ->  O : B --> ( Base `  ( R  ^s  ( Base `  R ) ) ) )
6949, 67, 683syl 20 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  O : B --> ( Base `  ( R  ^s  ( Base `  R )
) ) )
70 simprl 755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  f  e.  B
)
7169, 70ffvelrnd 6013 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( O `  f )  e.  (
Base `  ( R  ^s  ( Base `  R )
) ) )
7262, 52, 63, 64, 66, 71pwselbas 14733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( O `  f ) : (
Base `  R ) --> ( Base `  R )
)
73 ffn 5722 . . . . . . . . . . . . . . . . . . 19  |-  ( ( O `  f ) : ( Base `  R
) --> ( Base `  R
)  ->  ( O `  f )  Fn  ( Base `  R ) )
74 fniniseg 5993 . . . . . . . . . . . . . . . . . . 19  |-  ( ( O `  f )  Fn  ( Base `  R
)  ->  ( x  e.  ( `' ( O `
 f ) " { W } )  <->  ( x  e.  ( Base `  R
)  /\  ( ( O `  f ) `  x )  =  W ) ) )
7572, 73, 743syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( x  e.  ( `' ( O `
 f ) " { W } )  <->  ( x  e.  ( Base `  R
)  /\  ( ( O `  f ) `  x )  =  W ) ) )
7675simplbda 624 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( ( O `  f ) `  x
)  =  W )
7775simprbda 623 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  ->  x  e.  ( Base `  R ) )
78 fvex 5867 . . . . . . . . . . . . . . . . . . 19  |-  ( (coe1 `  f ) `  0
)  e.  _V
7978fvconst2 6107 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( Base `  R
)  ->  ( (
( Base `  R )  X.  { ( (coe1 `  f
) `  0 ) } ) `  x
)  =  ( (coe1 `  f ) `  0
) )
8077, 79syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( ( ( Base `  R )  X.  {
( (coe1 `  f ) ` 
0 ) } ) `
 x )  =  ( (coe1 `  f ) ` 
0 ) )
8161, 76, 803eqtr3rd 2510 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( (coe1 `  f ) ` 
0 )  =  W )
8281fveq2d 5861 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( (algSc `  P
) `  ( (coe1 `  f ) `  0
) )  =  ( (algSc `  P ) `  W ) )
83 fta1g.w . . . . . . . . . . . . . . . . 17  |-  W  =  ( 0g `  R
)
8410, 44, 83, 11ply1scl0 18095 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Ring  ->  ( (algSc `  P ) `  W
)  =  .0.  )
8542, 84syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
( (algSc `  P
) `  W )  =  .0.  )
8647, 82, 853eqtrd 2505 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  /\  x  e.  ( `' ( O `  f ) " { W } ) )  -> 
f  =  .0.  )
8786ex 434 . . . . . . . . . . . . 13  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( x  e.  ( `' ( O `
 f ) " { W } )  -> 
f  =  .0.  )
)
8887necon3ad 2670 . . . . . . . . . . . 12  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( f  =/= 
.0.  ->  -.  x  e.  ( `' ( O `  f ) " { W } ) ) )
8938, 88mpd 15 . . . . . . . . . . 11  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  -.  x  e.  ( `' ( O `  f ) " { W } ) )
9089eq0rdv 3813 . . . . . . . . . 10  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( `' ( O `  f )
" { W }
)  =  (/) )
9190fveq2d 5861 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  =  ( # `  (/) ) )
92 hash0 12392 . . . . . . . . 9  |-  ( # `  (/) )  =  0
9391, 92syl6eq 2517 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  =  0 )
9440, 31syl5breqr 4476 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  0  <_  ( D `  f )
)
9593, 94eqbrtrd 4460 . . . . . . 7  |-  ( ( R  e. IDomn  /\  (
f  e.  B  /\  ( D `  f )  =  0 ) )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )
9695expr 615 . . . . . 6  |-  ( ( R  e. IDomn  /\  f  e.  B )  ->  (
( D `  f
)  =  0  -> 
( # `  ( `' ( O `  f
) " { W } ) )  <_ 
( D `  f
) ) )
9796ralrimiva 2871 . . . . 5  |-  ( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f )  =  0  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) ) )
98 fveq2 5857 . . . . . . . . . . 11  |-  ( f  =  g  ->  ( D `  f )  =  ( D `  g ) )
9998eqeq1d 2462 . . . . . . . . . 10  |-  ( f  =  g  ->  (
( D `  f
)  =  d  <->  ( D `  g )  =  d ) )
100 fveq2 5857 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  ( O `  f )  =  ( O `  g ) )
101100cnveqd 5169 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  `' ( O `  f )  =  `' ( O `
 g ) )
102101imaeq1d 5327 . . . . . . . . . . . 12  |-  ( f  =  g  ->  ( `' ( O `  f ) " { W } )  =  ( `' ( O `  g ) " { W } ) )
103102fveq2d 5861 . . . . . . . . . . 11  |-  ( f  =  g  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  =  (
# `  ( `' ( O `  g )
" { W }
) ) )
104103, 98breq12d 4453 . . . . . . . . . 10  |-  ( f  =  g  ->  (
( # `  ( `' ( O `  f
) " { W } ) )  <_ 
( D `  f
)  <->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) ) )
10599, 104imbi12d 320 . . . . . . . . 9  |-  ( f  =  g  ->  (
( ( D `  f )  =  d  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  <->  ( ( D `  g )  =  d  ->  ( # `  ( `' ( O `
 g ) " { W } ) )  <_  ( D `  g ) ) ) )
106105cbvralv 3081 . . . . . . . 8  |-  ( A. f  e.  B  (
( D `  f
)  =  d  -> 
( # `  ( `' ( O `  f
) " { W } ) )  <_ 
( D `  f
) )  <->  A. g  e.  B  ( ( D `  g )  =  d  ->  ( # `  ( `' ( O `
 g ) " { W } ) )  <_  ( D `  g ) ) )
107 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  (
f  e.  B  /\  ( D `  f )  =  ( d  +  1 ) ) )  ->  ( D `  f )  =  ( d  +  1 ) )
108 peano2nn0 10825 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  NN0  ->  ( d  +  1 )  e. 
NN0 )
109108ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  (
f  e.  B  /\  ( D `  f )  =  ( d  +  1 ) ) )  ->  ( d  +  1 )  e.  NN0 )
110107, 109eqeltrd 2548 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  (
f  e.  B  /\  ( D `  f )  =  ( d  +  1 ) ) )  ->  ( D `  f )  e.  NN0 )
111110nn0ge0d 10844 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  (
f  e.  B  /\  ( D `  f )  =  ( d  +  1 ) ) )  ->  0  <_  ( D `  f )
)
112 fveq2 5857 . . . . . . . . . . . . . . . 16  |-  ( ( `' ( O `  f ) " { W } )  =  (/)  ->  ( # `  ( `' ( O `  f ) " { W } ) )  =  ( # `  (/) ) )
113112, 92syl6eq 2517 . . . . . . . . . . . . . . 15  |-  ( ( `' ( O `  f ) " { W } )  =  (/)  ->  ( # `  ( `' ( O `  f ) " { W } ) )  =  0 )
114113breq1d 4450 . . . . . . . . . . . . . 14  |-  ( ( `' ( O `  f ) " { W } )  =  (/)  ->  ( ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
)  <->  0  <_  ( D `  f )
) )
115111, 114syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  (
f  e.  B  /\  ( D `  f )  =  ( d  +  1 ) ) )  ->  ( ( `' ( O `  f
) " { W } )  =  (/)  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) ) )
116115a1dd 46 . . . . . . . . . . . 12  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  (
f  e.  B  /\  ( D `  f )  =  ( d  +  1 ) ) )  ->  ( ( `' ( O `  f
) " { W } )  =  (/)  ->  ( A. g  e.  B  ( ( D `
 g )  =  d  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
117 n0 3787 . . . . . . . . . . . . 13  |-  ( ( `' ( O `  f ) " { W } )  =/=  (/)  <->  E. x  x  e.  ( `' ( O `  f )
" { W }
) )
118 simplll 757 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  ( f  e.  B  /\  ( D `
 f )  =  ( d  +  1 ) ) )  /\  ( x  e.  ( `' ( O `  f ) " { W } )  /\  A. g  e.  B  (
( D `  g
)  =  d  -> 
( # `  ( `' ( O `  g
) " { W } ) )  <_ 
( D `  g
) ) ) )  ->  R  e. IDomn )
119 simplrl 759 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  ( f  e.  B  /\  ( D `
 f )  =  ( d  +  1 ) ) )  /\  ( x  e.  ( `' ( O `  f ) " { W } )  /\  A. g  e.  B  (
( D `  g
)  =  d  -> 
( # `  ( `' ( O `  g
) " { W } ) )  <_ 
( D `  g
) ) ) )  ->  f  e.  B
)
120 eqid 2460 . . . . . . . . . . . . . . . 16  |-  (var1 `  R
)  =  (var1 `  R
)
121 eqid 2460 . . . . . . . . . . . . . . . 16  |-  ( -g `  P )  =  (
-g `  P )
122 eqid 2460 . . . . . . . . . . . . . . . 16  |-  ( (var1 `  R ) ( -g `  P ) ( (algSc `  P ) `  x
) )  =  ( (var1 `  R ) (
-g `  P )
( (algSc `  P
) `  x )
)
123 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  ( f  e.  B  /\  ( D `
 f )  =  ( d  +  1 ) ) )  /\  ( x  e.  ( `' ( O `  f ) " { W } )  /\  A. g  e.  B  (
( D `  g
)  =  d  -> 
( # `  ( `' ( O `  g
) " { W } ) )  <_ 
( D `  g
) ) ) )  ->  d  e.  NN0 )
124 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  ( f  e.  B  /\  ( D `
 f )  =  ( d  +  1 ) ) )  /\  ( x  e.  ( `' ( O `  f ) " { W } )  /\  A. g  e.  B  (
( D `  g
)  =  d  -> 
( # `  ( `' ( O `  g
) " { W } ) )  <_ 
( D `  g
) ) ) )  ->  ( D `  f )  =  ( d  +  1 ) )
125 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  ( f  e.  B  /\  ( D `
 f )  =  ( d  +  1 ) ) )  /\  ( x  e.  ( `' ( O `  f ) " { W } )  /\  A. g  e.  B  (
( D `  g
)  =  d  -> 
( # `  ( `' ( O `  g
) " { W } ) )  <_ 
( D `  g
) ) ) )  ->  x  e.  ( `' ( O `  f ) " { W } ) )
126 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  ( f  e.  B  /\  ( D `
 f )  =  ( d  +  1 ) ) )  /\  ( x  e.  ( `' ( O `  f ) " { W } )  /\  A. g  e.  B  (
( D `  g
)  =  d  -> 
( # `  ( `' ( O `  g
) " { W } ) )  <_ 
( D `  g
) ) ) )  ->  A. g  e.  B  ( ( D `  g )  =  d  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) ) )
12710, 12, 9, 57, 83, 11, 118, 119, 52, 120, 121, 44, 122, 123, 124, 125, 126fta1glem2 22295 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  ( f  e.  B  /\  ( D `
 f )  =  ( d  +  1 ) ) )  /\  ( x  e.  ( `' ( O `  f ) " { W } )  /\  A. g  e.  B  (
( D `  g
)  =  d  -> 
( # `  ( `' ( O `  g
) " { W } ) )  <_ 
( D `  g
) ) ) )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )
128127exp32 605 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  (
f  e.  B  /\  ( D `  f )  =  ( d  +  1 ) ) )  ->  ( x  e.  ( `' ( O `
 f ) " { W } )  -> 
( A. g  e.  B  ( ( D `
 g )  =  d  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
129128exlimdv 1695 . . . . . . . . . . . . 13  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  (
f  e.  B  /\  ( D `  f )  =  ( d  +  1 ) ) )  ->  ( E. x  x  e.  ( `' ( O `  f )
" { W }
)  ->  ( A. g  e.  B  (
( D `  g
)  =  d  -> 
( # `  ( `' ( O `  g
) " { W } ) )  <_ 
( D `  g
) )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
130117, 129syl5bi 217 . . . . . . . . . . . 12  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  (
f  e.  B  /\  ( D `  f )  =  ( d  +  1 ) ) )  ->  ( ( `' ( O `  f
) " { W } )  =/=  (/)  ->  ( A. g  e.  B  ( ( D `  g )  =  d  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
131116, 130pm2.61dne 2777 . . . . . . . . . . 11  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  (
f  e.  B  /\  ( D `  f )  =  ( d  +  1 ) ) )  ->  ( A. g  e.  B  ( ( D `  g )  =  d  ->  ( # `  ( `' ( O `
 g ) " { W } ) )  <_  ( D `  g ) )  -> 
( # `  ( `' ( O `  f
) " { W } ) )  <_ 
( D `  f
) ) )
132131expr 615 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  f  e.  B )  ->  (
( D `  f
)  =  ( d  +  1 )  -> 
( A. g  e.  B  ( ( D `
 g )  =  d  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
133132com23 78 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  d  e.  NN0 )  /\  f  e.  B )  ->  ( A. g  e.  B  ( ( D `  g )  =  d  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) )  ->  (
( D `  f
)  =  ( d  +  1 )  -> 
( # `  ( `' ( O `  f
) " { W } ) )  <_ 
( D `  f
) ) ) )
134133ralrimdva 2875 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  d  e.  NN0 )  ->  ( A. g  e.  B  ( ( D `  g )  =  d  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) )  ->  A. f  e.  B  ( ( D `  f )  =  ( d  +  1 )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
135106, 134syl5bi 217 . . . . . . 7  |-  ( ( R  e. IDomn  /\  d  e.  NN0 )  ->  ( A. f  e.  B  ( ( D `  f )  =  d  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  ->  A. f  e.  B  ( ( D `  f )  =  ( d  +  1 )  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  <_  ( D `  f )
) ) )
136135expcom 435 . . . . . 6  |-  ( d  e.  NN0  ->  ( R  e. IDomn  ->  ( A. f  e.  B  ( ( D `  f )  =  d  ->  ( # `  ( `' ( O `
 f ) " { W } ) )  <_  ( D `  f ) )  ->  A. f  e.  B  ( ( D `  f )  =  ( d  +  1 )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) ) ) ) )
137136a2d 26 . . . . 5  |-  ( d  e.  NN0  ->  ( ( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f )  =  d  ->  ( # `  ( `' ( O `
 f ) " { W } ) )  <_  ( D `  f ) ) )  ->  ( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f )  =  ( d  +  1 )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) ) ) ) )
13818, 22, 26, 30, 97, 137nn0ind 10946 . . . 4  |-  ( ( D `  F )  e.  NN0  ->  ( R  e. IDomn  ->  A. f  e.  B  ( ( D `  f )  =  ( D `  F )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) ) ) )
13914, 3, 138sylc 60 . . 3  |-  ( ph  ->  A. f  e.  B  ( ( D `  f )  =  ( D `  F )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) ) )
140 fveq2 5857 . . . . . 6  |-  ( f  =  F  ->  ( D `  f )  =  ( D `  F ) )
141140eqeq1d 2462 . . . . 5  |-  ( f  =  F  ->  (
( D `  f
)  =  ( D `
 F )  <->  ( D `  F )  =  ( D `  F ) ) )
142 fveq2 5857 . . . . . . . . 9  |-  ( f  =  F  ->  ( O `  f )  =  ( O `  F ) )
143142cnveqd 5169 . . . . . . . 8  |-  ( f  =  F  ->  `' ( O `  f )  =  `' ( O `
 F ) )
144143imaeq1d 5327 . . . . . . 7  |-  ( f  =  F  ->  ( `' ( O `  f ) " { W } )  =  ( `' ( O `  F ) " { W } ) )
145144fveq2d 5861 . . . . . 6  |-  ( f  =  F  ->  ( # `
 ( `' ( O `  f )
" { W }
) )  =  (
# `  ( `' ( O `  F )
" { W }
) ) )
146145, 140breq12d 4453 . . . . 5  |-  ( f  =  F  ->  (
( # `  ( `' ( O `  f
) " { W } ) )  <_ 
( D `  f
)  <->  ( # `  ( `' ( O `  F ) " { W } ) )  <_ 
( D `  F
) ) )
147141, 146imbi12d 320 . . . 4  |-  ( f  =  F  ->  (
( ( D `  f )  =  ( D `  F )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  <->  ( ( D `  F )  =  ( D `  F )  ->  ( # `
 ( `' ( O `  F )
" { W }
) )  <_  ( D `  F )
) ) )
148147rspcv 3203 . . 3  |-  ( F  e.  B  ->  ( A. f  e.  B  ( ( D `  f )  =  ( D `  F )  ->  ( # `  ( `' ( O `  f ) " { W } ) )  <_ 
( D `  f
) )  ->  (
( D `  F
)  =  ( D `
 F )  -> 
( # `  ( `' ( O `  F
) " { W } ) )  <_ 
( D `  F
) ) ) )
1492, 139, 148sylc 60 . 2  |-  ( ph  ->  ( ( D `  F )  =  ( D `  F )  ->  ( # `  ( `' ( O `  F ) " { W } ) )  <_ 
( D `  F
) ) )
1501, 149mpi 17 1  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  <_ 
( D `  F
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762    =/= wne 2655   A.wral 2807   _Vcvv 3106   (/)c0 3778   {csn 4020   class class class wbr 4440    X. cxp 4990   `'ccnv 4991   "cima 4995    Fn wfn 5574   -->wf 5575   ` cfv 5579  (class class class)co 6275   0cc0 9481   1c1 9482    + caddc 9484    <_ cle 9618   NN0cn0 10784   #chash 12360   Basecbs 14479   0gc0g 14684    ^s cpws 14691   -gcsg 15719   Ringcrg 16979   CRingccrg 16980   RingHom crh 17138  Domncdomn 17692  IDomncidom 17693  algSccascl 17724  var1cv1 17979  Poly1cpl1 17980  coe1cco1 17981  eval1ce1 18115   deg1 cdg1 22180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-ofr 6516  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-tpos 6945  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-fz 11662  df-fzo 11782  df-seq 12064  df-hash 12361  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-0g 14686  df-gsum 14687  df-prds 14692  df-pws 14694  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-mhm 15770  df-submnd 15771  df-grp 15851  df-minusg 15852  df-sbg 15853  df-mulg 15854  df-subg 15986  df-ghm 16053  df-cntz 16143  df-cmn 16589  df-abl 16590  df-mgp 16925  df-ur 16937  df-srg 16941  df-rng 16981  df-cring 16982  df-oppr 17049  df-dvdsr 17067  df-unit 17068  df-invr 17098  df-rnghom 17141  df-subrg 17203  df-lmod 17290  df-lss 17355  df-lsp 17394  df-nzr 17681  df-rlreg 17695  df-domn 17696  df-idom 17697  df-assa 17725  df-asp 17726  df-ascl 17727  df-psr 17769  df-mvr 17770  df-mpl 17771  df-opsr 17773  df-evls 17935  df-evl 17936  df-psr1 17983  df-vr1 17984  df-ply1 17985  df-coe1 17986  df-evl1 18117  df-cnfld 18185  df-mdeg 22181  df-deg1 22182  df-mon1 22259  df-uc1p 22260  df-q1p 22261  df-r1p 22262
This theorem is referenced by:  fta1b  22298  lgsqrlem4  23340  idomrootle  30746
  Copyright terms: Public domain W3C validator