MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1blem Structured version   Unicode version

Theorem fta1blem 22332
Description: Lemma for fta1b 22333. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
fta1b.p  |-  P  =  (Poly1 `  R )
fta1b.b  |-  B  =  ( Base `  P
)
fta1b.d  |-  D  =  ( deg1  `  R )
fta1b.o  |-  O  =  (eval1 `  R )
fta1b.w  |-  W  =  ( 0g `  R
)
fta1b.z  |-  .0.  =  ( 0g `  P )
fta1blem.k  |-  K  =  ( Base `  R
)
fta1blem.t  |-  .X.  =  ( .r `  R )
fta1blem.x  |-  X  =  (var1 `  R )
fta1blem.s  |-  .x.  =  ( .s `  P )
fta1blem.1  |-  ( ph  ->  R  e.  CRing )
fta1blem.2  |-  ( ph  ->  M  e.  K )
fta1blem.3  |-  ( ph  ->  N  e.  K )
fta1blem.4  |-  ( ph  ->  ( M  .X.  N
)  =  W )
fta1blem.5  |-  ( ph  ->  M  =/=  W )
fta1blem.6  |-  ( ph  ->  ( ( M  .x.  X )  e.  ( B  \  {  .0.  } )  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
( D `  ( M  .x.  X ) ) ) )
Assertion
Ref Expression
fta1blem  |-  ( ph  ->  N  =  W )

Proof of Theorem fta1blem
StepHypRef Expression
1 fta1blem.3 . . . 4  |-  ( ph  ->  N  e.  K )
2 fta1b.o . . . . . . 7  |-  O  =  (eval1 `  R )
3 fta1b.p . . . . . . 7  |-  P  =  (Poly1 `  R )
4 fta1blem.k . . . . . . 7  |-  K  =  ( Base `  R
)
5 fta1b.b . . . . . . 7  |-  B  =  ( Base `  P
)
6 fta1blem.1 . . . . . . 7  |-  ( ph  ->  R  e.  CRing )
7 fta1blem.x . . . . . . . 8  |-  X  =  (var1 `  R )
82, 7, 4, 3, 5, 6, 1evl1vard 18172 . . . . . . 7  |-  ( ph  ->  ( X  e.  B  /\  ( ( O `  X ) `  N
)  =  N ) )
9 fta1blem.2 . . . . . . 7  |-  ( ph  ->  M  e.  K )
10 fta1blem.s . . . . . . 7  |-  .x.  =  ( .s `  P )
11 fta1blem.t . . . . . . 7  |-  .X.  =  ( .r `  R )
122, 3, 4, 5, 6, 1, 8, 9, 10, 11evl1vsd 18179 . . . . . 6  |-  ( ph  ->  ( ( M  .x.  X )  e.  B  /\  ( ( O `  ( M  .x.  X ) ) `  N )  =  ( M  .X.  N ) ) )
1312simprd 463 . . . . 5  |-  ( ph  ->  ( ( O `  ( M  .x.  X ) ) `  N )  =  ( M  .X.  N ) )
14 fta1blem.4 . . . . 5  |-  ( ph  ->  ( M  .X.  N
)  =  W )
1513, 14eqtrd 2508 . . . 4  |-  ( ph  ->  ( ( O `  ( M  .x.  X ) ) `  N )  =  W )
16 eqid 2467 . . . . . . 7  |-  ( R  ^s  K )  =  ( R  ^s  K )
17 eqid 2467 . . . . . . 7  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
18 fvex 5876 . . . . . . . . 9  |-  ( Base `  R )  e.  _V
194, 18eqeltri 2551 . . . . . . . 8  |-  K  e. 
_V
2019a1i 11 . . . . . . 7  |-  ( ph  ->  K  e.  _V )
212, 3, 16, 4evl1rhm 18167 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
226, 21syl 16 . . . . . . . . 9  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
235, 17rhmf 17176 . . . . . . . . 9  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
2422, 23syl 16 . . . . . . . 8  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
2512simpld 459 . . . . . . . 8  |-  ( ph  ->  ( M  .x.  X
)  e.  B )
2624, 25ffvelrnd 6022 . . . . . . 7  |-  ( ph  ->  ( O `  ( M  .x.  X ) )  e.  ( Base `  ( R  ^s  K ) ) )
2716, 4, 17, 6, 20, 26pwselbas 14744 . . . . . 6  |-  ( ph  ->  ( O `  ( M  .x.  X ) ) : K --> K )
28 ffn 5731 . . . . . 6  |-  ( ( O `  ( M 
.x.  X ) ) : K --> K  -> 
( O `  ( M  .x.  X ) )  Fn  K )
2927, 28syl 16 . . . . 5  |-  ( ph  ->  ( O `  ( M  .x.  X ) )  Fn  K )
30 fniniseg 6002 . . . . 5  |-  ( ( O `  ( M 
.x.  X ) )  Fn  K  ->  ( N  e.  ( `' ( O `  ( M 
.x.  X ) )
" { W }
)  <->  ( N  e.  K  /\  ( ( O `  ( M 
.x.  X ) ) `
 N )  =  W ) ) )
3129, 30syl 16 . . . 4  |-  ( ph  ->  ( N  e.  ( `' ( O `  ( M  .x.  X ) ) " { W } )  <->  ( N  e.  K  /\  (
( O `  ( M  .x.  X ) ) `
 N )  =  W ) ) )
321, 15, 31mpbir2and 920 . . 3  |-  ( ph  ->  N  e.  ( `' ( O `  ( M  .x.  X ) )
" { W }
) )
33 fvex 5876 . . . . . . . 8  |-  ( O `
 ( M  .x.  X ) )  e. 
_V
3433cnvex 6731 . . . . . . 7  |-  `' ( O `  ( M 
.x.  X ) )  e.  _V
35 imaexg 6721 . . . . . . 7  |-  ( `' ( O `  ( M  .x.  X ) )  e.  _V  ->  ( `' ( O `  ( M  .x.  X ) ) " { W } )  e.  _V )
3634, 35ax-mp 5 . . . . . 6  |-  ( `' ( O `  ( M  .x.  X ) )
" { W }
)  e.  _V
3736a1i 11 . . . . 5  |-  ( ph  ->  ( `' ( O `
 ( M  .x.  X ) ) " { W } )  e. 
_V )
38 1nn0 10811 . . . . . 6  |-  1  e.  NN0
3938a1i 11 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
40 crngrng 17010 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  R  e.  Ring )
416, 40syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  Ring )
427, 3, 5vr1cl 18057 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  X  e.  B )
4341, 42syl 16 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  B )
44 eqid 2467 . . . . . . . . . . . . 13  |-  (mulGrp `  P )  =  (mulGrp `  P )
4544, 5mgpbas 16949 . . . . . . . . . . . 12  |-  B  =  ( Base `  (mulGrp `  P ) )
46 eqid 2467 . . . . . . . . . . . 12  |-  (.g `  (mulGrp `  P ) )  =  (.g `  (mulGrp `  P
) )
4745, 46mulg1 15959 . . . . . . . . . . 11  |-  ( X  e.  B  ->  (
1 (.g `  (mulGrp `  P
) ) X )  =  X )
4843, 47syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 1 (.g `  (mulGrp `  P ) ) X )  =  X )
4948oveq2d 6300 . . . . . . . . 9  |-  ( ph  ->  ( M  .x.  (
1 (.g `  (mulGrp `  P
) ) X ) )  =  ( M 
.x.  X ) )
50 fta1blem.5 . . . . . . . . . . 11  |-  ( ph  ->  M  =/=  W )
51 fta1b.w . . . . . . . . . . . . 13  |-  W  =  ( 0g `  R
)
5251, 4, 3, 7, 10, 44, 46coe1tmfv1 18114 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  M  e.  K  /\  1  e.  NN0 )  ->  (
(coe1 `  ( M  .x.  ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =  M )
5341, 9, 39, 52syl3anc 1228 . . . . . . . . . . 11  |-  ( ph  ->  ( (coe1 `  ( M  .x.  ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =  M )
54 fta1b.z . . . . . . . . . . . . . . 15  |-  .0.  =  ( 0g `  P )
553, 54, 51coe1z 18103 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  (coe1 `  .0.  )  =  ( NN0  X. 
{ W } ) )
5641, 55syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  (coe1 `  .0.  )  =  ( NN0  X.  { W } ) )
5756fveq1d 5868 . . . . . . . . . . . 12  |-  ( ph  ->  ( (coe1 `  .0.  ) ` 
1 )  =  ( ( NN0  X.  { W } ) `  1
) )
58 fvex 5876 . . . . . . . . . . . . . . 15  |-  ( 0g
`  R )  e. 
_V
5951, 58eqeltri 2551 . . . . . . . . . . . . . 14  |-  W  e. 
_V
6059fvconst2 6116 . . . . . . . . . . . . 13  |-  ( 1  e.  NN0  ->  ( ( NN0  X.  { W } ) `  1
)  =  W )
6138, 60ax-mp 5 . . . . . . . . . . . 12  |-  ( ( NN0  X.  { W } ) `  1
)  =  W
6257, 61syl6eq 2524 . . . . . . . . . . 11  |-  ( ph  ->  ( (coe1 `  .0.  ) ` 
1 )  =  W )
6350, 53, 623netr4d 2772 . . . . . . . . . 10  |-  ( ph  ->  ( (coe1 `  ( M  .x.  ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =/=  (
(coe1 `  .0.  ) ` 
1 ) )
64 fveq2 5866 . . . . . . . . . . . 12  |-  ( ( M  .x.  ( 1 (.g `  (mulGrp `  P
) ) X ) )  =  .0.  ->  (coe1 `  ( M  .x.  (
1 (.g `  (mulGrp `  P
) ) X ) ) )  =  (coe1 `  .0.  ) )
6564fveq1d 5868 . . . . . . . . . . 11  |-  ( ( M  .x.  ( 1 (.g `  (mulGrp `  P
) ) X ) )  =  .0.  ->  ( (coe1 `  ( M  .x.  ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =  ( (coe1 `  .0.  ) ` 
1 ) )
6665necon3i 2707 . . . . . . . . . 10  |-  ( ( (coe1 `  ( M  .x.  ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =/=  (
(coe1 `  .0.  ) ` 
1 )  ->  ( M  .x.  ( 1 (.g `  (mulGrp `  P )
) X ) )  =/=  .0.  )
6763, 66syl 16 . . . . . . . . 9  |-  ( ph  ->  ( M  .x.  (
1 (.g `  (mulGrp `  P
) ) X ) )  =/=  .0.  )
6849, 67eqnetrrd 2761 . . . . . . . 8  |-  ( ph  ->  ( M  .x.  X
)  =/=  .0.  )
69 eldifsn 4152 . . . . . . . 8  |-  ( ( M  .x.  X )  e.  ( B  \  {  .0.  } )  <->  ( ( M  .x.  X )  e.  B  /\  ( M 
.x.  X )  =/= 
.0.  ) )
7025, 68, 69sylanbrc 664 . . . . . . 7  |-  ( ph  ->  ( M  .x.  X
)  e.  ( B 
\  {  .0.  }
) )
71 fta1blem.6 . . . . . . 7  |-  ( ph  ->  ( ( M  .x.  X )  e.  ( B  \  {  .0.  } )  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
( D `  ( M  .x.  X ) ) ) )
7270, 71mpd 15 . . . . . 6  |-  ( ph  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
( D `  ( M  .x.  X ) ) )
7349fveq2d 5870 . . . . . . 7  |-  ( ph  ->  ( D `  ( M  .x.  ( 1 (.g `  (mulGrp `  P )
) X ) ) )  =  ( D `
 ( M  .x.  X ) ) )
74 fta1b.d . . . . . . . . 9  |-  D  =  ( deg1  `  R )
7574, 4, 3, 7, 10, 44, 46, 51deg1tm 22282 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( M  e.  K  /\  M  =/=  W )  /\  1  e.  NN0 )  -> 
( D `  ( M  .x.  ( 1 (.g `  (mulGrp `  P )
) X ) ) )  =  1 )
7641, 9, 50, 39, 75syl121anc 1233 . . . . . . 7  |-  ( ph  ->  ( D `  ( M  .x.  ( 1 (.g `  (mulGrp `  P )
) X ) ) )  =  1 )
7773, 76eqtr3d 2510 . . . . . 6  |-  ( ph  ->  ( D `  ( M  .x.  X ) )  =  1 )
7872, 77breqtrd 4471 . . . . 5  |-  ( ph  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
1 )
79 hashbnd 12379 . . . . 5  |-  ( ( ( `' ( O `
 ( M  .x.  X ) ) " { W } )  e. 
_V  /\  1  e.  NN0 
/\  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
1 )  ->  ( `' ( O `  ( M  .x.  X ) ) " { W } )  e.  Fin )
8037, 39, 78, 79syl3anc 1228 . . . 4  |-  ( ph  ->  ( `' ( O `
 ( M  .x.  X ) ) " { W } )  e. 
Fin )
814, 51rng0cl 17021 . . . . . . 7  |-  ( R  e.  Ring  ->  W  e.  K )
8241, 81syl 16 . . . . . 6  |-  ( ph  ->  W  e.  K )
83 eqid 2467 . . . . . . . . . . . . 13  |-  (algSc `  P )  =  (algSc `  P )
843, 83, 4, 5ply1sclf 18125 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  (algSc `  P ) : K --> B )
8541, 84syl 16 . . . . . . . . . . 11  |-  ( ph  ->  (algSc `  P ) : K --> B )
8685, 9ffvelrnd 6022 . . . . . . . . . 10  |-  ( ph  ->  ( (algSc `  P
) `  M )  e.  B )
87 eqid 2467 . . . . . . . . . . 11  |-  ( .r
`  P )  =  ( .r `  P
)
88 eqid 2467 . . . . . . . . . . 11  |-  ( .r
`  ( R  ^s  K
) )  =  ( .r `  ( R  ^s  K ) )
895, 87, 88rhmmul 17177 . . . . . . . . . 10  |-  ( ( O  e.  ( P RingHom 
( R  ^s  K ) )  /\  ( (algSc `  P ) `  M
)  e.  B  /\  X  e.  B )  ->  ( O `  (
( (algSc `  P
) `  M )
( .r `  P
) X ) )  =  ( ( O `
 ( (algSc `  P ) `  M
) ) ( .r
`  ( R  ^s  K
) ) ( O `
 X ) ) )
9022, 86, 43, 89syl3anc 1228 . . . . . . . . 9  |-  ( ph  ->  ( O `  (
( (algSc `  P
) `  M )
( .r `  P
) X ) )  =  ( ( O `
 ( (algSc `  P ) `  M
) ) ( .r
`  ( R  ^s  K
) ) ( O `
 X ) ) )
913ply1assa 18037 . . . . . . . . . . . 12  |-  ( R  e.  CRing  ->  P  e. AssAlg )
926, 91syl 16 . . . . . . . . . . 11  |-  ( ph  ->  P  e. AssAlg )
933ply1sca 18093 . . . . . . . . . . . . . . 15  |-  ( R  e.  CRing  ->  R  =  (Scalar `  P ) )
946, 93syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  =  (Scalar `  P ) )
9594fveq2d 5870 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (Scalar `  P )
) )
964, 95syl5eq 2520 . . . . . . . . . . . 12  |-  ( ph  ->  K  =  ( Base `  (Scalar `  P )
) )
979, 96eleqtrd 2557 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ( Base `  (Scalar `  P )
) )
98 eqid 2467 . . . . . . . . . . . 12  |-  (Scalar `  P )  =  (Scalar `  P )
99 eqid 2467 . . . . . . . . . . . 12  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
10083, 98, 99, 5, 87, 10asclmul1 17787 . . . . . . . . . . 11  |-  ( ( P  e. AssAlg  /\  M  e.  ( Base `  (Scalar `  P ) )  /\  X  e.  B )  ->  ( ( (algSc `  P ) `  M
) ( .r `  P ) X )  =  ( M  .x.  X ) )
10192, 97, 43, 100syl3anc 1228 . . . . . . . . . 10  |-  ( ph  ->  ( ( (algSc `  P ) `  M
) ( .r `  P ) X )  =  ( M  .x.  X ) )
102101fveq2d 5870 . . . . . . . . 9  |-  ( ph  ->  ( O `  (
( (algSc `  P
) `  M )
( .r `  P
) X ) )  =  ( O `  ( M  .x.  X ) ) )
10324, 86ffvelrnd 6022 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  (
(algSc `  P ) `  M ) )  e.  ( Base `  ( R  ^s  K ) ) )
10424, 43ffvelrnd 6022 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  X
)  e.  ( Base `  ( R  ^s  K ) ) )
10516, 17, 6, 20, 103, 104, 11, 88pwsmulrval 14746 . . . . . . . . . 10  |-  ( ph  ->  ( ( O `  ( (algSc `  P ) `  M ) ) ( .r `  ( R  ^s  K ) ) ( O `  X ) )  =  ( ( O `  ( (algSc `  P ) `  M
) )  oF 
.X.  ( O `  X ) ) )
1062, 3, 4, 83evl1sca 18169 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  M  e.  K )  ->  ( O `  ( (algSc `  P ) `  M
) )  =  ( K  X.  { M } ) )
1076, 9, 106syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  (
(algSc `  P ) `  M ) )  =  ( K  X.  { M } ) )
1082, 7, 4evl1var 18171 . . . . . . . . . . . 12  |-  ( R  e.  CRing  ->  ( O `  X )  =  (  _I  |`  K )
)
1096, 108syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  X
)  =  (  _I  |`  K ) )
110107, 109oveq12d 6302 . . . . . . . . . 10  |-  ( ph  ->  ( ( O `  ( (algSc `  P ) `  M ) )  oF  .X.  ( O `  X ) )  =  ( ( K  X.  { M } )  oF  .X.  (  _I  |`  K ) ) )
111105, 110eqtrd 2508 . . . . . . . . 9  |-  ( ph  ->  ( ( O `  ( (algSc `  P ) `  M ) ) ( .r `  ( R  ^s  K ) ) ( O `  X ) )  =  ( ( K  X.  { M } )  oF 
.X.  (  _I  |`  K ) ) )
11290, 102, 1113eqtr3d 2516 . . . . . . . 8  |-  ( ph  ->  ( O `  ( M  .x.  X ) )  =  ( ( K  X.  { M }
)  oF  .X.  (  _I  |`  K ) ) )
113112fveq1d 5868 . . . . . . 7  |-  ( ph  ->  ( ( O `  ( M  .x.  X ) ) `  W )  =  ( ( ( K  X.  { M } )  oF 
.X.  (  _I  |`  K ) ) `  W ) )
114 fnconstg 5773 . . . . . . . . . 10  |-  ( M  e.  K  ->  ( K  X.  { M }
)  Fn  K )
1159, 114syl 16 . . . . . . . . 9  |-  ( ph  ->  ( K  X.  { M } )  Fn  K
)
116 fnresi 5698 . . . . . . . . . 10  |-  (  _I  |`  K )  Fn  K
117116a1i 11 . . . . . . . . 9  |-  ( ph  ->  (  _I  |`  K )  Fn  K )
118 fnfvof 6537 . . . . . . . . 9  |-  ( ( ( ( K  X.  { M } )  Fn  K  /\  (  _I  |`  K )  Fn  K
)  /\  ( K  e.  _V  /\  W  e.  K ) )  -> 
( ( ( K  X.  { M }
)  oF  .X.  (  _I  |`  K ) ) `  W )  =  ( ( ( K  X.  { M } ) `  W
)  .X.  ( (  _I  |`  K ) `  W ) ) )
119115, 117, 20, 82, 118syl22anc 1229 . . . . . . . 8  |-  ( ph  ->  ( ( ( K  X.  { M }
)  oF  .X.  (  _I  |`  K ) ) `  W )  =  ( ( ( K  X.  { M } ) `  W
)  .X.  ( (  _I  |`  K ) `  W ) ) )
120 fvconst2g 6114 . . . . . . . . . . 11  |-  ( ( M  e.  K  /\  W  e.  K )  ->  ( ( K  X.  { M } ) `  W )  =  M )
1219, 82, 120syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( K  X.  { M } ) `  W )  =  M )
122 fvresi 6087 . . . . . . . . . . 11  |-  ( W  e.  K  ->  (
(  _I  |`  K ) `
 W )  =  W )
12382, 122syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( (  _I  |`  K ) `
 W )  =  W )
124121, 123oveq12d 6302 . . . . . . . . 9  |-  ( ph  ->  ( ( ( K  X.  { M }
) `  W )  .X.  ( (  _I  |`  K ) `
 W ) )  =  ( M  .X.  W ) )
1254, 11, 51rngrz 17037 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  M  e.  K )  ->  ( M  .X.  W )  =  W )
12641, 9, 125syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( M  .X.  W
)  =  W )
127124, 126eqtrd 2508 . . . . . . . 8  |-  ( ph  ->  ( ( ( K  X.  { M }
) `  W )  .X.  ( (  _I  |`  K ) `
 W ) )  =  W )
128119, 127eqtrd 2508 . . . . . . 7  |-  ( ph  ->  ( ( ( K  X.  { M }
)  oF  .X.  (  _I  |`  K ) ) `  W )  =  W )
129113, 128eqtrd 2508 . . . . . 6  |-  ( ph  ->  ( ( O `  ( M  .x.  X ) ) `  W )  =  W )
130 fniniseg 6002 . . . . . . 7  |-  ( ( O `  ( M 
.x.  X ) )  Fn  K  ->  ( W  e.  ( `' ( O `  ( M 
.x.  X ) )
" { W }
)  <->  ( W  e.  K  /\  ( ( O `  ( M 
.x.  X ) ) `
 W )  =  W ) ) )
13129, 130syl 16 . . . . . 6  |-  ( ph  ->  ( W  e.  ( `' ( O `  ( M  .x.  X ) ) " { W } )  <->  ( W  e.  K  /\  (
( O `  ( M  .x.  X ) ) `
 W )  =  W ) ) )
13282, 129, 131mpbir2and 920 . . . . 5  |-  ( ph  ->  W  e.  ( `' ( O `  ( M  .x.  X ) )
" { W }
) )
133132snssd 4172 . . . 4  |-  ( ph  ->  { W }  C_  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )
134 hashsng 12406 . . . . . . 7  |-  ( W  e.  K  ->  ( # `
 { W }
)  =  1 )
13582, 134syl 16 . . . . . 6  |-  ( ph  ->  ( # `  { W } )  =  1 )
136 ssdomg 7561 . . . . . . . . . 10  |-  ( ( `' ( O `  ( M  .x.  X ) ) " { W } )  e.  _V  ->  ( { W }  C_  ( `' ( O `
 ( M  .x.  X ) ) " { W } )  ->  { W }  ~<_  ( `' ( O `  ( M  .x.  X ) )
" { W }
) ) )
13736, 133, 136mpsyl 63 . . . . . . . . 9  |-  ( ph  ->  { W }  ~<_  ( `' ( O `  ( M  .x.  X ) )
" { W }
) )
138 snfi 7596 . . . . . . . . . 10  |-  { W }  e.  Fin
139 hashdom 12415 . . . . . . . . . 10  |-  ( ( { W }  e.  Fin  /\  ( `' ( O `  ( M 
.x.  X ) )
" { W }
)  e.  _V )  ->  ( ( # `  { W } )  <_  ( # `
 ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )  <->  { W }  ~<_  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) )
140138, 36, 139mp2an 672 . . . . . . . . 9  |-  ( (
# `  { W } )  <_  ( # `
 ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )  <->  { W }  ~<_  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )
141137, 140sylibr 212 . . . . . . . 8  |-  ( ph  ->  ( # `  { W } )  <_  ( # `
 ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) )
142135, 141eqbrtrrd 4469 . . . . . . 7  |-  ( ph  ->  1  <_  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) ) )
143 hashcl 12396 . . . . . . . . . 10  |-  ( ( `' ( O `  ( M  .x.  X ) ) " { W } )  e.  Fin  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  e. 
NN0 )
14480, 143syl 16 . . . . . . . . 9  |-  ( ph  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  e. 
NN0 )
145144nn0red 10853 . . . . . . . 8  |-  ( ph  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  e.  RR )
146 1re 9595 . . . . . . . 8  |-  1  e.  RR
147 letri3 9670 . . . . . . . 8  |-  ( ( ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  e.  RR  /\  1  e.  RR )  ->  (
( # `  ( `' ( O `  ( M  .x.  X ) )
" { W }
) )  =  1  <-> 
( ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
1  /\  1  <_  (
# `  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) ) ) )
148145, 146, 147sylancl 662 . . . . . . 7  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  =  1  <->  ( ( # `  ( `' ( O `
 ( M  .x.  X ) ) " { W } ) )  <_  1  /\  1  <_  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) ) ) ) )
14978, 142, 148mpbir2and 920 . . . . . 6  |-  ( ph  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  =  1 )
150135, 149eqtr4d 2511 . . . . 5  |-  ( ph  ->  ( # `  { W } )  =  (
# `  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) )
151 hashen 12388 . . . . . 6  |-  ( ( { W }  e.  Fin  /\  ( `' ( O `  ( M 
.x.  X ) )
" { W }
)  e.  Fin )  ->  ( ( # `  { W } )  =  (
# `  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )  <->  { W }  ~~  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) )
152138, 80, 151sylancr 663 . . . . 5  |-  ( ph  ->  ( ( # `  { W } )  =  (
# `  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )  <->  { W }  ~~  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) )
153150, 152mpbid 210 . . . 4  |-  ( ph  ->  { W }  ~~  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )
154 fisseneq 7731 . . . 4  |-  ( ( ( `' ( O `
 ( M  .x.  X ) ) " { W } )  e. 
Fin  /\  { W }  C_  ( `' ( O `  ( M 
.x.  X ) )
" { W }
)  /\  { W }  ~~  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )  ->  { W }  =  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )
15580, 133, 153, 154syl3anc 1228 . . 3  |-  ( ph  ->  { W }  =  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )
15632, 155eleqtrrd 2558 . 2  |-  ( ph  ->  N  e.  { W } )
157 elsni 4052 . 2  |-  ( N  e.  { W }  ->  N  =  W )
158156, 157syl 16 1  |-  ( ph  ->  N  =  W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113    \ cdif 3473    C_ wss 3476   {csn 4027   class class class wbr 4447    _I cid 4790    X. cxp 4997   `'ccnv 4998    |` cres 5001   "cima 5002    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284    oFcof 6522    ~~ cen 7513    ~<_ cdom 7514   Fincfn 7516   RRcr 9491   1c1 9493    <_ cle 9629   NN0cn0 10795   #chash 12373   Basecbs 14490   .rcmulr 14556  Scalarcsca 14558   .scvsca 14559   0gc0g 14695    ^s cpws 14702  .gcmg 15731  mulGrpcmgp 16943   Ringcrg 17000   CRingccrg 17001   RingHom crh 17162  AssAlgcasa 17757  algSccascl 17759  var1cv1 18014  Poly1cpl1 18015  coe1cco1 18016  eval1ce1 18150   deg1 cdg1 22215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-ofr 6525  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-sup 7901  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-fz 11673  df-fzo 11793  df-seq 12076  df-hash 12374  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-0g 14697  df-gsum 14698  df-prds 14703  df-pws 14705  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-mhm 15786  df-submnd 15787  df-grp 15867  df-minusg 15868  df-sbg 15869  df-mulg 15870  df-subg 16003  df-ghm 16070  df-cntz 16160  df-cmn 16606  df-abl 16607  df-mgp 16944  df-ur 16956  df-srg 16960  df-rng 17002  df-cring 17003  df-rnghom 17165  df-subrg 17227  df-lmod 17314  df-lss 17379  df-lsp 17418  df-assa 17760  df-asp 17761  df-ascl 17762  df-psr 17804  df-mvr 17805  df-mpl 17806  df-opsr 17808  df-evls 17970  df-evl 17971  df-psr1 18018  df-vr1 18019  df-ply1 18020  df-coe1 18021  df-evl1 18152  df-cnfld 18220  df-mdeg 22216  df-deg1 22217
This theorem is referenced by:  fta1b  22333
  Copyright terms: Public domain W3C validator