MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1 Unicode version

Theorem fta1 20178
Description: The easy direction of the Fundamental Theorem of Algebra: A nonzero polynomial has at most deg ( F ) roots. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
fta1.1  |-  R  =  ( `' F " { 0 } )
Assertion
Ref Expression
fta1  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0 p )  -> 
( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) )

Proof of Theorem fta1
Dummy variables  x  g  f  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2404 . 2  |-  (deg `  F )  =  (deg
`  F )
2 dgrcl 20105 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
32adantr 452 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0 p )  -> 
(deg `  F )  e.  NN0 )
4 eqeq2 2413 . . . . . . 7  |-  ( x  =  0  ->  (
(deg `  f )  =  x  <->  (deg `  f )  =  0 ) )
54imbi1d 309 . . . . . 6  |-  ( x  =  0  ->  (
( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  f )  =  0  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
65ralbidv 2686 . . . . 5  |-  ( x  =  0  ->  ( A. f  e.  (
(Poly `  CC )  \  { 0 p }
) ( (deg `  f )  =  x  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  f )  =  0  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
7 eqeq2 2413 . . . . . . 7  |-  ( x  =  d  ->  (
(deg `  f )  =  x  <->  (deg `  f )  =  d ) )
87imbi1d 309 . . . . . 6  |-  ( x  =  d  ->  (
( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  f )  =  d  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
98ralbidv 2686 . . . . 5  |-  ( x  =  d  ->  ( A. f  e.  (
(Poly `  CC )  \  { 0 p }
) ( (deg `  f )  =  x  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  f )  =  d  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
10 eqeq2 2413 . . . . . . 7  |-  ( x  =  ( d  +  1 )  ->  (
(deg `  f )  =  x  <->  (deg `  f )  =  ( d  +  1 ) ) )
1110imbi1d 309 . . . . . 6  |-  ( x  =  ( d  +  1 )  ->  (
( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  f )  =  ( d  +  1 )  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
1211ralbidv 2686 . . . . 5  |-  ( x  =  ( d  +  1 )  ->  ( A. f  e.  (
(Poly `  CC )  \  { 0 p }
) ( (deg `  f )  =  x  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  f )  =  ( d  +  1 )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
13 eqeq2 2413 . . . . . . 7  |-  ( x  =  (deg `  F
)  ->  ( (deg `  f )  =  x  <-> 
(deg `  f )  =  (deg `  F )
) )
1413imbi1d 309 . . . . . 6  |-  ( x  =  (deg `  F
)  ->  ( (
(deg `  f )  =  x  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  ( (deg `  f )  =  (deg
`  F )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
1514ralbidv 2686 . . . . 5  |-  ( x  =  (deg `  F
)  ->  ( A. f  e.  ( (Poly `  CC )  \  {
0 p } ) ( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
16 eldifsni 3888 . . . . . . . . . . 11  |-  ( f  e.  ( (Poly `  CC )  \  { 0 p } )  -> 
f  =/=  0 p )
1716adantr 452 . . . . . . . . . 10  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0 p } )  /\  (deg `  f
)  =  0 )  ->  f  =/=  0 p )
18 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  (deg `  f
)  =  0 )
19 eldifi 3429 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  ( (Poly `  CC )  \  { 0 p } )  -> 
f  e.  (Poly `  CC ) )
2019ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  e.  (Poly `  CC ) )
21 0dgrb 20118 . . . . . . . . . . . . . . . 16  |-  ( f  e.  (Poly `  CC )  ->  ( (deg `  f )  =  0  <-> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) ) )
2220, 21syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( (deg `  f )  =  0  <-> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) ) )
2318, 22mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  =  ( CC  X.  { ( f `  0 ) } ) )
2423fveq1d 5689 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( f `  x )  =  ( ( CC  X.  {
( f `  0
) } ) `  x ) )
2519adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0 p } )  /\  (deg `  f
)  =  0 )  ->  f  e.  (Poly `  CC ) )
26 plyf 20070 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  e.  (Poly `  CC )  ->  f : CC --> CC )
27 ffn 5550 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f : CC --> CC  ->  f  Fn  CC )
2825, 26, 273syl 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0 p } )  /\  (deg `  f
)  =  0 )  ->  f  Fn  CC )
29 fniniseg 5810 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  Fn  CC  ->  (
x  e.  ( `' f " { 0 } )  <->  ( x  e.  CC  /\  ( f `
 x )  =  0 ) ) )
3028, 29syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0 p } )  /\  (deg `  f
)  =  0 )  ->  ( x  e.  ( `' f " { 0 } )  <-> 
( x  e.  CC  /\  ( f `  x
)  =  0 ) ) )
3130biimpa 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( x  e.  CC  /\  ( f `
 x )  =  0 ) )
3231simprd 450 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( f `  x )  =  0 )
3331simpld 446 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  x  e.  CC )
34 fvex 5701 . . . . . . . . . . . . . . . . . . 19  |-  ( f `
 0 )  e. 
_V
3534fvconst2 5906 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( CC  X.  {
( f `  0
) } ) `  x )  =  ( f `  0 ) )
3633, 35syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( ( CC 
X.  { ( f `
 0 ) } ) `  x )  =  ( f ` 
0 ) )
3724, 32, 363eqtr3rd 2445 . . . . . . . . . . . . . . . 16  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( f ` 
0 )  =  0 )
3837sneqd 3787 . . . . . . . . . . . . . . 15  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  { ( f `
 0 ) }  =  { 0 } )
3938xpeq2d 4861 . . . . . . . . . . . . . 14  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( CC  X.  { ( f ` 
0 ) } )  =  ( CC  X.  { 0 } ) )
4023, 39eqtrd 2436 . . . . . . . . . . . . 13  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  =  ( CC  X.  { 0 } ) )
41 df-0p 19515 . . . . . . . . . . . . 13  |-  0 p  =  ( CC  X.  { 0 } )
4240, 41syl6eqr 2454 . . . . . . . . . . . 12  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0 p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  =  0 p )
4342ex 424 . . . . . . . . . . 11  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0 p } )  /\  (deg `  f
)  =  0 )  ->  ( x  e.  ( `' f " { 0 } )  ->  f  =  0 p ) )
4443necon3ad 2603 . . . . . . . . . 10  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0 p } )  /\  (deg `  f
)  =  0 )  ->  ( f  =/=  0 p  ->  -.  x  e.  ( `' f " { 0 } ) ) )
4517, 44mpd 15 . . . . . . . . 9  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0 p } )  /\  (deg `  f
)  =  0 )  ->  -.  x  e.  ( `' f " {
0 } ) )
4645eq0rdv 3622 . . . . . . . 8  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0 p } )  /\  (deg `  f
)  =  0 )  ->  ( `' f
" { 0 } )  =  (/) )
4746ex 424 . . . . . . 7  |-  ( f  e.  ( (Poly `  CC )  \  { 0 p } )  -> 
( (deg `  f
)  =  0  -> 
( `' f " { 0 } )  =  (/) ) )
48 dgrcl 20105 . . . . . . . . 9  |-  ( f  e.  (Poly `  CC )  ->  (deg `  f
)  e.  NN0 )
49 nn0ge0 10203 . . . . . . . . 9  |-  ( (deg
`  f )  e. 
NN0  ->  0  <_  (deg `  f ) )
5019, 48, 493syl 19 . . . . . . . 8  |-  ( f  e.  ( (Poly `  CC )  \  { 0 p } )  -> 
0  <_  (deg `  f
) )
51 id 20 . . . . . . . . . . 11  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( `' f
" { 0 } )  =  (/) )
52 0fin 7295 . . . . . . . . . . 11  |-  (/)  e.  Fin
5351, 52syl6eqel 2492 . . . . . . . . . 10  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( `' f
" { 0 } )  e.  Fin )
5453biantrurd 495 . . . . . . . . 9  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( ( # `  ( `' f " { 0 } ) )  <_  (deg `  f
)  <->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) )
55 fveq2 5687 . . . . . . . . . . 11  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( # `  ( `' f " {
0 } ) )  =  ( # `  (/) ) )
56 hash0 11601 . . . . . . . . . . 11  |-  ( # `  (/) )  =  0
5755, 56syl6eq 2452 . . . . . . . . . 10  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( # `  ( `' f " {
0 } ) )  =  0 )
5857breq1d 4182 . . . . . . . . 9  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( ( # `  ( `' f " { 0 } ) )  <_  (deg `  f
)  <->  0  <_  (deg `  f ) ) )
5954, 58bitr3d 247 . . . . . . . 8  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) )  <->  0  <_  (deg
`  f ) ) )
6050, 59syl5ibrcom 214 . . . . . . 7  |-  ( f  e.  ( (Poly `  CC )  \  { 0 p } )  -> 
( ( `' f
" { 0 } )  =  (/)  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) ) )
6147, 60syld 42 . . . . . 6  |-  ( f  e.  ( (Poly `  CC )  \  { 0 p } )  -> 
( (deg `  f
)  =  0  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) )
6261rgen 2731 . . . . 5  |-  A. f  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  f )  =  0  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )
63 fveq2 5687 . . . . . . . . 9  |-  ( f  =  g  ->  (deg `  f )  =  (deg
`  g ) )
6463eqeq1d 2412 . . . . . . . 8  |-  ( f  =  g  ->  (
(deg `  f )  =  d  <->  (deg `  g )  =  d ) )
65 cnveq 5005 . . . . . . . . . . 11  |-  ( f  =  g  ->  `' f  =  `' g
)
6665imaeq1d 5161 . . . . . . . . . 10  |-  ( f  =  g  ->  ( `' f " {
0 } )  =  ( `' g " { 0 } ) )
6766eleq1d 2470 . . . . . . . . 9  |-  ( f  =  g  ->  (
( `' f " { 0 } )  e.  Fin  <->  ( `' g " { 0 } )  e.  Fin )
)
6866fveq2d 5691 . . . . . . . . . 10  |-  ( f  =  g  ->  ( # `
 ( `' f
" { 0 } ) )  =  (
# `  ( `' g " { 0 } ) ) )
6968, 63breq12d 4185 . . . . . . . . 9  |-  ( f  =  g  ->  (
( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )  <->  (
# `  ( `' g " { 0 } ) )  <_  (deg `  g ) ) )
7067, 69anbi12d 692 . . . . . . . 8  |-  ( f  =  g  ->  (
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
)  <->  ( ( `' g " { 0 } )  e.  Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
7164, 70imbi12d 312 . . . . . . 7  |-  ( f  =  g  ->  (
( (deg `  f
)  =  d  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  g )  =  d  ->  ( ( `' g " { 0 } )  e.  Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )
7271cbvralv 2892 . . . . . 6  |-  ( A. f  e.  ( (Poly `  CC )  \  {
0 p } ) ( (deg `  f
)  =  d  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
7350ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0 p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  0  <_  (deg
`  f ) )
7473, 59syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0 p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( ( `' f " {
0 } )  =  (/)  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) )
7574a1dd 44 . . . . . . . . . 10  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0 p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( ( `' f " {
0 } )  =  (/)  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
76 n0 3597 . . . . . . . . . . 11  |-  ( ( `' f " {
0 } )  =/=  (/) 
<->  E. x  x  e.  ( `' f " { 0 } ) )
77 eqid 2404 . . . . . . . . . . . . . 14  |-  ( `' f " { 0 } )  =  ( `' f " {
0 } )
78 simplll 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0 p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  d  e.  NN0 )
79 simpllr 736 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0 p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  f  e.  ( (Poly `  CC )  \  { 0 p }
) )
80 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0 p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  (deg `  f
)  =  ( d  +  1 ) )
81 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0 p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  x  e.  ( `' f " {
0 } ) )
82 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0 p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
8377, 78, 79, 80, 81, 82fta1lem 20177 . . . . . . . . . . . . 13  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0 p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )
8483exp32 589 . . . . . . . . . . . 12  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0 p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( x  e.  ( `' f " { 0 } )  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8584exlimdv 1643 . . . . . . . . . . 11  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0 p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( E. x  x  e.  ( `' f " {
0 } )  -> 
( A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8676, 85syl5bi 209 . . . . . . . . . 10  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0 p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( ( `' f " {
0 } )  =/=  (/)  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8775, 86pm2.61dne 2644 . . . . . . . . 9  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0 p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( A. g  e.  ( (Poly `  CC )  \  {
0 p } ) ( (deg `  g
)  =  d  -> 
( ( `' g
" { 0 } )  e.  Fin  /\  ( # `  ( `' g " { 0 } ) )  <_ 
(deg `  g )
) )  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) ) )
8887ex 424 . . . . . . . 8  |-  ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0 p } ) )  ->  ( (deg `  f )  =  ( d  +  1 )  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8988com23 74 . . . . . . 7  |-  ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0 p } ) )  ->  ( A. g  e.  ( (Poly `  CC )  \  {
0 p } ) ( (deg `  g
)  =  d  -> 
( ( `' g
" { 0 } )  e.  Fin  /\  ( # `  ( `' g " { 0 } ) )  <_ 
(deg `  g )
) )  ->  (
(deg `  f )  =  ( d  +  1 )  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) ) ) )
9089ralrimdva 2756 . . . . . 6  |-  ( d  e.  NN0  ->  ( A. g  e.  ( (Poly `  CC )  \  {
0 p } ) ( (deg `  g
)  =  d  -> 
( ( `' g
" { 0 } )  e.  Fin  /\  ( # `  ( `' g " { 0 } ) )  <_ 
(deg `  g )
) )  ->  A. f  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  f )  =  ( d  +  1 )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
9172, 90syl5bi 209 . . . . 5  |-  ( d  e.  NN0  ->  ( A. f  e.  ( (Poly `  CC )  \  {
0 p } ) ( (deg `  f
)  =  d  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  A. f  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  f )  =  ( d  +  1 )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
926, 9, 12, 15, 62, 91nn0ind 10322 . . . 4  |-  ( (deg
`  F )  e. 
NN0  ->  A. f  e.  ( (Poly `  CC )  \  { 0 p }
) ( (deg `  f )  =  (deg
`  F )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) )
933, 92syl 16 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0 p )  ->  A. f  e.  (
(Poly `  CC )  \  { 0 p }
) ( (deg `  f )  =  (deg
`  F )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) )
94 plyssc 20072 . . . . 5  |-  (Poly `  S )  C_  (Poly `  CC )
9594sseli 3304 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
96 eldifsn 3887 . . . . 5  |-  ( F  e.  ( (Poly `  CC )  \  { 0 p } )  <->  ( F  e.  (Poly `  CC )  /\  F  =/=  0 p ) )
97 fveq2 5687 . . . . . . . 8  |-  ( f  =  F  ->  (deg `  f )  =  (deg
`  F ) )
9897eqeq1d 2412 . . . . . . 7  |-  ( f  =  F  ->  (
(deg `  f )  =  (deg `  F )  <->  (deg
`  F )  =  (deg `  F )
) )
99 cnveq 5005 . . . . . . . . . . 11  |-  ( f  =  F  ->  `' f  =  `' F
)
10099imaeq1d 5161 . . . . . . . . . 10  |-  ( f  =  F  ->  ( `' f " {
0 } )  =  ( `' F " { 0 } ) )
101 fta1.1 . . . . . . . . . 10  |-  R  =  ( `' F " { 0 } )
102100, 101syl6eqr 2454 . . . . . . . . 9  |-  ( f  =  F  ->  ( `' f " {
0 } )  =  R )
103102eleq1d 2470 . . . . . . . 8  |-  ( f  =  F  ->  (
( `' f " { 0 } )  e.  Fin  <->  R  e.  Fin ) )
104102fveq2d 5691 . . . . . . . . 9  |-  ( f  =  F  ->  ( # `
 ( `' f
" { 0 } ) )  =  (
# `  R )
)
105104, 97breq12d 4185 . . . . . . . 8  |-  ( f  =  F  ->  (
( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )  <->  (
# `  R )  <_  (deg `  F )
) )
106103, 105anbi12d 692 . . . . . . 7  |-  ( f  =  F  ->  (
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
)  <->  ( R  e. 
Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) )
10798, 106imbi12d 312 . . . . . 6  |-  ( f  =  F  ->  (
( (deg `  f
)  =  (deg `  F )  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) )  <-> 
( (deg `  F
)  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `
 R )  <_ 
(deg `  F )
) ) ) )
108107rspcv 3008 . . . . 5  |-  ( F  e.  ( (Poly `  CC )  \  { 0 p } )  -> 
( A. f  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  (
(deg `  F )  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) ) )
10996, 108sylbir 205 . . . 4  |-  ( ( F  e.  (Poly `  CC )  /\  F  =/=  0 p )  -> 
( A. f  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  (
(deg `  F )  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) ) )
11095, 109sylan 458 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0 p )  -> 
( A. f  e.  ( (Poly `  CC )  \  { 0 p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  (
(deg `  F )  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) ) )
11193, 110mpd 15 . 2  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0 p )  -> 
( (deg `  F
)  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `
 R )  <_ 
(deg `  F )
) ) )
1121, 111mpi 17 1  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0 p )  -> 
( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666    \ cdif 3277   (/)c0 3588   {csn 3774   class class class wbr 4172    X. cxp 4835   `'ccnv 4836   "cima 4840    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   0cc0 8946   1c1 8947    + caddc 8949    <_ cle 9077   NN0cn0 10177   #chash 11573   0 pc0p 19514  Polycply 20056  degcdgr 20059
This theorem is referenced by:  vieta1lem2  20181  vieta1  20182  plyexmo  20183  aannenlem1  20198  aalioulem2  20203  basellem4  20819  basellem5  20820  dchrfi  20992
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-0p 19515  df-ply 20060  df-idp 20061  df-coe 20062  df-dgr 20063  df-quot 20161
  Copyright terms: Public domain W3C validator