MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1 Structured version   Unicode version

Theorem fta1 22454
Description: The easy direction of the Fundamental Theorem of Algebra: A nonzero polynomial has at most deg ( F ) roots. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
fta1.1  |-  R  =  ( `' F " { 0 } )
Assertion
Ref Expression
fta1  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  -> 
( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) )

Proof of Theorem fta1
Dummy variables  x  g  f  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . 2  |-  (deg `  F )  =  (deg
`  F )
2 dgrcl 22381 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
32adantr 465 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  -> 
(deg `  F )  e.  NN0 )
4 eqeq2 2482 . . . . . . 7  |-  ( x  =  0  ->  (
(deg `  f )  =  x  <->  (deg `  f )  =  0 ) )
54imbi1d 317 . . . . . 6  |-  ( x  =  0  ->  (
( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  f )  =  0  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
65ralbidv 2903 . . . . 5  |-  ( x  =  0  ->  ( A. f  e.  (
(Poly `  CC )  \  { 0p }
) ( (deg `  f )  =  x  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  0  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
7 eqeq2 2482 . . . . . . 7  |-  ( x  =  d  ->  (
(deg `  f )  =  x  <->  (deg `  f )  =  d ) )
87imbi1d 317 . . . . . 6  |-  ( x  =  d  ->  (
( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  f )  =  d  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
98ralbidv 2903 . . . . 5  |-  ( x  =  d  ->  ( A. f  e.  (
(Poly `  CC )  \  { 0p }
) ( (deg `  f )  =  x  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  d  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
10 eqeq2 2482 . . . . . . 7  |-  ( x  =  ( d  +  1 )  ->  (
(deg `  f )  =  x  <->  (deg `  f )  =  ( d  +  1 ) ) )
1110imbi1d 317 . . . . . 6  |-  ( x  =  ( d  +  1 )  ->  (
( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  f )  =  ( d  +  1 )  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
1211ralbidv 2903 . . . . 5  |-  ( x  =  ( d  +  1 )  ->  ( A. f  e.  (
(Poly `  CC )  \  { 0p }
) ( (deg `  f )  =  x  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  ( d  +  1 )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
13 eqeq2 2482 . . . . . . 7  |-  ( x  =  (deg `  F
)  ->  ( (deg `  f )  =  x  <-> 
(deg `  f )  =  (deg `  F )
) )
1413imbi1d 317 . . . . . 6  |-  ( x  =  (deg `  F
)  ->  ( (
(deg `  f )  =  x  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  ( (deg `  f )  =  (deg
`  F )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
1514ralbidv 2903 . . . . 5  |-  ( x  =  (deg `  F
)  ->  ( A. f  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
16 eldifsni 4153 . . . . . . . . . . 11  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
f  =/=  0p )
1716adantr 465 . . . . . . . . . 10  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  f  =/=  0p )
18 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  (deg `  f
)  =  0 )
19 eldifi 3626 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
f  e.  (Poly `  CC ) )
2019ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  e.  (Poly `  CC ) )
21 0dgrb 22394 . . . . . . . . . . . . . . . 16  |-  ( f  e.  (Poly `  CC )  ->  ( (deg `  f )  =  0  <-> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) ) )
2220, 21syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( (deg `  f )  =  0  <-> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) ) )
2318, 22mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  =  ( CC  X.  { ( f `  0 ) } ) )
2423fveq1d 5867 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( f `  x )  =  ( ( CC  X.  {
( f `  0
) } ) `  x ) )
2519adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  f  e.  (Poly `  CC ) )
26 plyf 22346 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  e.  (Poly `  CC )  ->  f : CC --> CC )
27 ffn 5730 . . . . . . . . . . . . . . . . . . . 20  |-  ( f : CC --> CC  ->  f  Fn  CC )
28 fniniseg 6001 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  Fn  CC  ->  (
x  e.  ( `' f " { 0 } )  <->  ( x  e.  CC  /\  ( f `
 x )  =  0 ) ) )
2925, 26, 27, 284syl 21 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  ( x  e.  ( `' f " { 0 } )  <-> 
( x  e.  CC  /\  ( f `  x
)  =  0 ) ) )
3029biimpa 484 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( x  e.  CC  /\  ( f `
 x )  =  0 ) )
3130simprd 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( f `  x )  =  0 )
3230simpld 459 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  x  e.  CC )
33 fvex 5875 . . . . . . . . . . . . . . . . . . 19  |-  ( f `
 0 )  e. 
_V
3433fvconst2 6115 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( CC  X.  {
( f `  0
) } ) `  x )  =  ( f `  0 ) )
3532, 34syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( ( CC 
X.  { ( f `
 0 ) } ) `  x )  =  ( f ` 
0 ) )
3624, 31, 353eqtr3rd 2517 . . . . . . . . . . . . . . . 16  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( f ` 
0 )  =  0 )
3736sneqd 4039 . . . . . . . . . . . . . . 15  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  { ( f `
 0 ) }  =  { 0 } )
3837xpeq2d 5023 . . . . . . . . . . . . . 14  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( CC  X.  { ( f ` 
0 ) } )  =  ( CC  X.  { 0 } ) )
3923, 38eqtrd 2508 . . . . . . . . . . . . 13  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  =  ( CC  X.  { 0 } ) )
40 df-0p 21828 . . . . . . . . . . . . 13  |-  0p  =  ( CC  X.  { 0 } )
4139, 40syl6eqr 2526 . . . . . . . . . . . 12  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  =  0p )
4241ex 434 . . . . . . . . . . 11  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  ( x  e.  ( `' f " { 0 } )  ->  f  =  0p ) )
4342necon3ad 2677 . . . . . . . . . 10  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  ( f  =/=  0p  ->  -.  x  e.  ( `' f " { 0 } ) ) )
4417, 43mpd 15 . . . . . . . . 9  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  -.  x  e.  ( `' f " {
0 } ) )
4544eq0rdv 3820 . . . . . . . 8  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  ( `' f
" { 0 } )  =  (/) )
4645ex 434 . . . . . . 7  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
( (deg `  f
)  =  0  -> 
( `' f " { 0 } )  =  (/) ) )
47 dgrcl 22381 . . . . . . . . 9  |-  ( f  e.  (Poly `  CC )  ->  (deg `  f
)  e.  NN0 )
48 nn0ge0 10820 . . . . . . . . 9  |-  ( (deg
`  f )  e. 
NN0  ->  0  <_  (deg `  f ) )
4919, 47, 483syl 20 . . . . . . . 8  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
0  <_  (deg `  f
) )
50 id 22 . . . . . . . . . . 11  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( `' f
" { 0 } )  =  (/) )
51 0fin 7747 . . . . . . . . . . 11  |-  (/)  e.  Fin
5250, 51syl6eqel 2563 . . . . . . . . . 10  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( `' f
" { 0 } )  e.  Fin )
5352biantrurd 508 . . . . . . . . 9  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( ( # `  ( `' f " { 0 } ) )  <_  (deg `  f
)  <->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) )
54 fveq2 5865 . . . . . . . . . . 11  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( # `  ( `' f " {
0 } ) )  =  ( # `  (/) ) )
55 hash0 12404 . . . . . . . . . . 11  |-  ( # `  (/) )  =  0
5654, 55syl6eq 2524 . . . . . . . . . 10  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( # `  ( `' f " {
0 } ) )  =  0 )
5756breq1d 4457 . . . . . . . . 9  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( ( # `  ( `' f " { 0 } ) )  <_  (deg `  f
)  <->  0  <_  (deg `  f ) ) )
5853, 57bitr3d 255 . . . . . . . 8  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) )  <->  0  <_  (deg
`  f ) ) )
5949, 58syl5ibrcom 222 . . . . . . 7  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
( ( `' f
" { 0 } )  =  (/)  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) ) )
6046, 59syld 44 . . . . . 6  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
( (deg `  f
)  =  0  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) )
6160rgen 2824 . . . . 5  |-  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  0  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )
62 fveq2 5865 . . . . . . . . 9  |-  ( f  =  g  ->  (deg `  f )  =  (deg
`  g ) )
6362eqeq1d 2469 . . . . . . . 8  |-  ( f  =  g  ->  (
(deg `  f )  =  d  <->  (deg `  g )  =  d ) )
64 cnveq 5175 . . . . . . . . . . 11  |-  ( f  =  g  ->  `' f  =  `' g
)
6564imaeq1d 5335 . . . . . . . . . 10  |-  ( f  =  g  ->  ( `' f " {
0 } )  =  ( `' g " { 0 } ) )
6665eleq1d 2536 . . . . . . . . 9  |-  ( f  =  g  ->  (
( `' f " { 0 } )  e.  Fin  <->  ( `' g " { 0 } )  e.  Fin )
)
6765fveq2d 5869 . . . . . . . . . 10  |-  ( f  =  g  ->  ( # `
 ( `' f
" { 0 } ) )  =  (
# `  ( `' g " { 0 } ) ) )
6867, 62breq12d 4460 . . . . . . . . 9  |-  ( f  =  g  ->  (
( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )  <->  (
# `  ( `' g " { 0 } ) )  <_  (deg `  g ) ) )
6966, 68anbi12d 710 . . . . . . . 8  |-  ( f  =  g  ->  (
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
)  <->  ( ( `' g " { 0 } )  e.  Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
7063, 69imbi12d 320 . . . . . . 7  |-  ( f  =  g  ->  (
( (deg `  f
)  =  d  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  g )  =  d  ->  ( ( `' g " { 0 } )  e.  Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )
7170cbvralv 3088 . . . . . 6  |-  ( A. f  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  f
)  =  d  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
7249ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  0  <_  (deg
`  f ) )
7372, 58syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( ( `' f " {
0 } )  =  (/)  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) )
7473a1dd 46 . . . . . . . . . 10  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( ( `' f " {
0 } )  =  (/)  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
75 n0 3794 . . . . . . . . . . 11  |-  ( ( `' f " {
0 } )  =/=  (/) 
<->  E. x  x  e.  ( `' f " { 0 } ) )
76 eqid 2467 . . . . . . . . . . . . . 14  |-  ( `' f " { 0 } )  =  ( `' f " {
0 } )
77 simplll 757 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  d  e.  NN0 )
78 simpllr 758 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  f  e.  ( (Poly `  CC )  \  { 0p }
) )
79 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  (deg `  f
)  =  ( d  +  1 ) )
80 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  x  e.  ( `' f " {
0 } ) )
81 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
8276, 77, 78, 79, 80, 81fta1lem 22453 . . . . . . . . . . . . 13  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )
8382exp32 605 . . . . . . . . . . . 12  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( x  e.  ( `' f " { 0 } )  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8483exlimdv 1700 . . . . . . . . . . 11  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( E. x  x  e.  ( `' f " {
0 } )  -> 
( A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8575, 84syl5bi 217 . . . . . . . . . 10  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( ( `' f " {
0 } )  =/=  (/)  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8674, 85pm2.61dne 2784 . . . . . . . . 9  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( A. g  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  g
)  =  d  -> 
( ( `' g
" { 0 } )  e.  Fin  /\  ( # `  ( `' g " { 0 } ) )  <_ 
(deg `  g )
) )  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) ) )
8786ex 434 . . . . . . . 8  |-  ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  ->  ( (deg `  f )  =  ( d  +  1 )  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8887com23 78 . . . . . . 7  |-  ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  ->  ( A. g  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  g
)  =  d  -> 
( ( `' g
" { 0 } )  e.  Fin  /\  ( # `  ( `' g " { 0 } ) )  <_ 
(deg `  g )
) )  ->  (
(deg `  f )  =  ( d  +  1 )  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) ) ) )
8988ralrimdva 2882 . . . . . 6  |-  ( d  e.  NN0  ->  ( A. g  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  g
)  =  d  -> 
( ( `' g
" { 0 } )  e.  Fin  /\  ( # `  ( `' g " { 0 } ) )  <_ 
(deg `  g )
) )  ->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  ( d  +  1 )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
9071, 89syl5bi 217 . . . . 5  |-  ( d  e.  NN0  ->  ( A. f  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  f
)  =  d  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  ( d  +  1 )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
916, 9, 12, 15, 61, 90nn0ind 10956 . . . 4  |-  ( (deg
`  F )  e. 
NN0  ->  A. f  e.  ( (Poly `  CC )  \  { 0p }
) ( (deg `  f )  =  (deg
`  F )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) )
923, 91syl 16 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  ->  A. f  e.  (
(Poly `  CC )  \  { 0p }
) ( (deg `  f )  =  (deg
`  F )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) )
93 plyssc 22348 . . . . 5  |-  (Poly `  S )  C_  (Poly `  CC )
9493sseli 3500 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
95 eldifsn 4152 . . . . 5  |-  ( F  e.  ( (Poly `  CC )  \  { 0p } )  <->  ( F  e.  (Poly `  CC )  /\  F  =/=  0p ) )
96 fveq2 5865 . . . . . . . 8  |-  ( f  =  F  ->  (deg `  f )  =  (deg
`  F ) )
9796eqeq1d 2469 . . . . . . 7  |-  ( f  =  F  ->  (
(deg `  f )  =  (deg `  F )  <->  (deg
`  F )  =  (deg `  F )
) )
98 cnveq 5175 . . . . . . . . . . 11  |-  ( f  =  F  ->  `' f  =  `' F
)
9998imaeq1d 5335 . . . . . . . . . 10  |-  ( f  =  F  ->  ( `' f " {
0 } )  =  ( `' F " { 0 } ) )
100 fta1.1 . . . . . . . . . 10  |-  R  =  ( `' F " { 0 } )
10199, 100syl6eqr 2526 . . . . . . . . 9  |-  ( f  =  F  ->  ( `' f " {
0 } )  =  R )
102101eleq1d 2536 . . . . . . . 8  |-  ( f  =  F  ->  (
( `' f " { 0 } )  e.  Fin  <->  R  e.  Fin ) )
103101fveq2d 5869 . . . . . . . . 9  |-  ( f  =  F  ->  ( # `
 ( `' f
" { 0 } ) )  =  (
# `  R )
)
104103, 96breq12d 4460 . . . . . . . 8  |-  ( f  =  F  ->  (
( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )  <->  (
# `  R )  <_  (deg `  F )
) )
105102, 104anbi12d 710 . . . . . . 7  |-  ( f  =  F  ->  (
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
)  <->  ( R  e. 
Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) )
10697, 105imbi12d 320 . . . . . 6  |-  ( f  =  F  ->  (
( (deg `  f
)  =  (deg `  F )  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) )  <-> 
( (deg `  F
)  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `
 R )  <_ 
(deg `  F )
) ) ) )
107106rspcv 3210 . . . . 5  |-  ( F  e.  ( (Poly `  CC )  \  { 0p } )  -> 
( A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  (
(deg `  F )  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) ) )
10895, 107sylbir 213 . . . 4  |-  ( ( F  e.  (Poly `  CC )  /\  F  =/=  0p )  -> 
( A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  (
(deg `  F )  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) ) )
10994, 108sylan 471 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  -> 
( A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  (
(deg `  F )  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) ) )
11092, 109mpd 15 . 2  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  -> 
( (deg `  F
)  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `
 R )  <_ 
(deg `  F )
) ) )
1111, 110mpi 17 1  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  -> 
( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814    \ cdif 3473   (/)c0 3785   {csn 4027   class class class wbr 4447    X. cxp 4997   `'ccnv 4998   "cima 5002    Fn wfn 5582   -->wf 5583   ` cfv 5587  (class class class)co 6283   Fincfn 7516   CCcc 9489   0cc0 9491   1c1 9492    + caddc 9494    <_ cle 9628   NN0cn0 10794   #chash 12372   0pc0p 21827  Polycply 22332  degcdgr 22335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-n0 10795  df-z 10864  df-uz 11082  df-rp 11220  df-fz 11672  df-fzo 11792  df-fl 11896  df-seq 12075  df-exp 12134  df-hash 12373  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-clim 13273  df-rlim 13274  df-sum 13471  df-0p 21828  df-ply 22336  df-idp 22337  df-coe 22338  df-dgr 22339  df-quot 22437
This theorem is referenced by:  vieta1lem2  22457  vieta1  22458  plyexmo  22459  aannenlem1  22474  aalioulem2  22479  basellem4  23101  basellem5  23102  dchrfi  23274
  Copyright terms: Public domain W3C validator