MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta Unicode version

Theorem fta 20149
Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
fta  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. z  e.  CC  ( F `  z )  =  0 )
Distinct variable groups:    z, F    z, S

Proof of Theorem fta
StepHypRef Expression
1 eqid 2253 . . . 4  |-  (coeff `  F )  =  (coeff `  F )
2 eqid 2253 . . . 4  |-  (deg `  F )  =  (deg
`  F )
3 simpl 445 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  F  e.  (Poly `  S ) )
4 simpr 449 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  (deg `  F
)  e.  NN )
5 eqid 2253 . . . 4  |-  if ( if ( 1  <_ 
s ,  s ,  1 )  <_  (
( abs `  ( F `  0 )
)  /  ( ( abs `  ( (coeff `  F ) `  (deg `  F ) ) )  /  2 ) ) ,  ( ( abs `  ( F `  0
) )  /  (
( abs `  (
(coeff `  F ) `  (deg `  F )
) )  /  2
) ) ,  if ( 1  <_  s ,  s ,  1 ) )  =  if ( if ( 1  <_  s ,  s ,  1 )  <_ 
( ( abs `  ( F `  0 )
)  /  ( ( abs `  ( (coeff `  F ) `  (deg `  F ) ) )  /  2 ) ) ,  ( ( abs `  ( F `  0
) )  /  (
( abs `  (
(coeff `  F ) `  (deg `  F )
) )  /  2
) ) ,  if ( 1  <_  s ,  s ,  1 ) )
6 eqid 2253 . . . 4  |-  ( ( abs `  ( F `
 0 ) )  /  ( ( abs `  ( (coeff `  F
) `  (deg `  F
) ) )  / 
2 ) )  =  ( ( abs `  ( F `  0 )
)  /  ( ( abs `  ( (coeff `  F ) `  (deg `  F ) ) )  /  2 ) )
71, 2, 3, 4, 5, 6ftalem2 20143 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. r  e.  RR+  A. y  e.  CC  (
r  <  ( abs `  y )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  y )
) ) )
8 simpll 733 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  F  e.  (Poly `  S )
)
9 simplr 734 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  (deg `  F )  e.  NN )
10 eqid 2253 . . . . . 6  |-  { s  e.  CC  |  ( abs `  s )  <_  r }  =  { s  e.  CC  |  ( abs `  s
)  <_  r }
11 eqid 2253 . . . . . 6  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
12 simprl 735 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  r  e.  RR+ )
13 simprr 736 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) )
14 fveq2 5377 . . . . . . . . . 10  |-  ( y  =  x  ->  ( abs `  y )  =  ( abs `  x
) )
1514breq2d 3932 . . . . . . . . 9  |-  ( y  =  x  ->  (
r  <  ( abs `  y )  <->  r  <  ( abs `  x ) ) )
16 fveq2 5377 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
1716fveq2d 5381 . . . . . . . . . 10  |-  ( y  =  x  ->  ( abs `  ( F `  y ) )  =  ( abs `  ( F `  x )
) )
1817breq2d 3932 . . . . . . . . 9  |-  ( y  =  x  ->  (
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  y
) )  <->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
1915, 18imbi12d 313 . . . . . . . 8  |-  ( y  =  x  ->  (
( r  <  ( abs `  y )  -> 
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  y
) ) )  <->  ( r  <  ( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) ) )
2019cbvralv 2708 . . . . . . 7  |-  ( A. y  e.  CC  (
r  <  ( abs `  y )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  y )
) )  <->  A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
2113, 20sylib 190 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
221, 2, 8, 9, 10, 11, 12, 21ftalem3 20144 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) )
2322expr 601 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  r  e.  RR+ )  ->  ( A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) )  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) ) )
2423rexlimdva 2629 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  ( E. r  e.  RR+  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) )  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) ) )
257, 24mpd 16 . 2  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) )
26 simpll 733 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  ->  F  e.  (Poly `  S
) )
27 simplr 734 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  -> 
(deg `  F )  e.  NN )
28 simprl 735 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  -> 
z  e.  CC )
29 simprr 736 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  -> 
( F `  z
)  =/=  0 )
301, 2, 26, 27, 28, 29ftalem7 20148 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  ->  -.  A. x  e.  CC  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
) )
3130expr 601 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  z  e.  CC )  ->  ( ( F `
 z )  =/=  0  ->  -.  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
3231necon4ad 2473 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  z  e.  CC )  ->  ( A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) )  ->  ( F `  z )  =  0 ) )
3332reximdva 2617 . 2  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  ( E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) )  ->  E. z  e.  CC  ( F `  z )  =  0 ) )
3425, 33mpd 16 1  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. z  e.  CC  ( F `  z )  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510   {crab 2512   ifcif 3470   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   0cc0 8617   1c1 8618    < clt 8747    <_ cle 8748    / cdiv 9303   NNcn 9626   2c2 9675   RR+crp 10233   abscabs 11596   TopOpenctopn 13200  ℂfldccnfld 16209  Polycply 19398  coeffccoe 19400  degcdgr 19401
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-sum 12036  df-ef 12223  df-sin 12225  df-cos 12226  df-pi 12228  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-0p 18857  df-limc 19048  df-dv 19049  df-ply 19402  df-idp 19403  df-coe 19404  df-dgr 19405  df-log 19746  df-cxp 19747
  Copyright terms: Public domain W3C validator