MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta Structured version   Unicode version

Theorem fta 22439
Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
fta  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. z  e.  CC  ( F `  z )  =  0 )
Distinct variable groups:    z, F    z, S

Proof of Theorem fta
Dummy variables  s 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . 4  |-  (coeff `  F )  =  (coeff `  F )
2 eqid 2443 . . . 4  |-  (deg `  F )  =  (deg
`  F )
3 simpl 457 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  F  e.  (Poly `  S ) )
4 simpr 461 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  (deg `  F
)  e.  NN )
5 eqid 2443 . . . 4  |-  if ( if ( 1  <_ 
s ,  s ,  1 )  <_  (
( abs `  ( F `  0 )
)  /  ( ( abs `  ( (coeff `  F ) `  (deg `  F ) ) )  /  2 ) ) ,  ( ( abs `  ( F `  0
) )  /  (
( abs `  (
(coeff `  F ) `  (deg `  F )
) )  /  2
) ) ,  if ( 1  <_  s ,  s ,  1 ) )  =  if ( if ( 1  <_  s ,  s ,  1 )  <_ 
( ( abs `  ( F `  0 )
)  /  ( ( abs `  ( (coeff `  F ) `  (deg `  F ) ) )  /  2 ) ) ,  ( ( abs `  ( F `  0
) )  /  (
( abs `  (
(coeff `  F ) `  (deg `  F )
) )  /  2
) ) ,  if ( 1  <_  s ,  s ,  1 ) )
6 eqid 2443 . . . 4  |-  ( ( abs `  ( F `
 0 ) )  /  ( ( abs `  ( (coeff `  F
) `  (deg `  F
) ) )  / 
2 ) )  =  ( ( abs `  ( F `  0 )
)  /  ( ( abs `  ( (coeff `  F ) `  (deg `  F ) ) )  /  2 ) )
71, 2, 3, 4, 5, 6ftalem2 22433 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. r  e.  RR+  A. y  e.  CC  (
r  <  ( abs `  y )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  y )
) ) )
8 simpll 753 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  F  e.  (Poly `  S )
)
9 simplr 754 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  (deg `  F )  e.  NN )
10 eqid 2443 . . . 4  |-  { s  e.  CC  |  ( abs `  s )  <_  r }  =  { s  e.  CC  |  ( abs `  s
)  <_  r }
11 eqid 2443 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
12 simprl 755 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  r  e.  RR+ )
13 simprr 756 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) )
14 fveq2 5712 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  y )  =  ( abs `  x
) )
1514breq2d 4325 . . . . . . 7  |-  ( y  =  x  ->  (
r  <  ( abs `  y )  <->  r  <  ( abs `  x ) ) )
16 fveq2 5712 . . . . . . . . 9  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
1716fveq2d 5716 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  ( F `  y ) )  =  ( abs `  ( F `  x )
) )
1817breq2d 4325 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  y
) )  <->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
1915, 18imbi12d 320 . . . . . 6  |-  ( y  =  x  ->  (
( r  <  ( abs `  y )  -> 
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  y
) ) )  <->  ( r  <  ( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) ) )
2019cbvralv 2968 . . . . 5  |-  ( A. y  e.  CC  (
r  <  ( abs `  y )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  y )
) )  <->  A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
2113, 20sylib 196 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
221, 2, 8, 9, 10, 11, 12, 21ftalem3 22434 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) )
237, 22rexlimddv 2866 . 2  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) )
24 simpll 753 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  ->  F  e.  (Poly `  S
) )
25 simplr 754 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  -> 
(deg `  F )  e.  NN )
26 simprl 755 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  -> 
z  e.  CC )
27 simprr 756 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  -> 
( F `  z
)  =/=  0 )
281, 2, 24, 25, 26, 27ftalem7 22438 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  ->  -.  A. x  e.  CC  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
) )
2928expr 615 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  z  e.  CC )  ->  ( ( F `
 z )  =/=  0  ->  -.  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
3029necon4ad 2696 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  z  e.  CC )  ->  ( A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) )  ->  ( F `  z )  =  0 ) )
3130reximdva 2849 . 2  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  ( E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) )  ->  E. z  e.  CC  ( F `  z )  =  0 ) )
3223, 31mpd 15 1  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. z  e.  CC  ( F `  z )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736   E.wrex 2737   {crab 2740   ifcif 3812   class class class wbr 4313   ` cfv 5439  (class class class)co 6112   CCcc 9301   0cc0 9303   1c1 9304    < clt 9439    <_ cle 9440    / cdiv 10014   NNcn 10343   2c2 10392   RR+crp 11012   abscabs 12744   TopOpenctopn 14381  ℂfldccnfld 17840  Polycply 21674  coeffccoe 21676  degcdgr 21677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-supp 6712  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fsupp 7642  df-fi 7682  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ioo 11325  df-ioc 11326  df-ico 11327  df-icc 11328  df-fz 11459  df-fzo 11570  df-fl 11663  df-mod 11730  df-seq 11828  df-exp 11887  df-fac 12073  df-bc 12100  df-hash 12125  df-shft 12577  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-limsup 12970  df-clim 12987  df-rlim 12988  df-sum 13185  df-ef 13374  df-sin 13376  df-cos 13377  df-pi 13379  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-hom 14283  df-cco 14284  df-rest 14382  df-topn 14383  df-0g 14401  df-gsum 14402  df-topgen 14403  df-pt 14404  df-prds 14407  df-xrs 14461  df-qtop 14466  df-imas 14467  df-xps 14469  df-mre 14545  df-mrc 14546  df-acs 14548  df-mnd 15436  df-submnd 15486  df-mulg 15569  df-cntz 15856  df-cmn 16300  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-fbas 17836  df-fg 17837  df-cnfld 17841  df-top 18525  df-bases 18527  df-topon 18528  df-topsp 18529  df-cld 18645  df-ntr 18646  df-cls 18647  df-nei 18724  df-lp 18762  df-perf 18763  df-cn 18853  df-cnp 18854  df-haus 18941  df-cmp 19012  df-tx 19157  df-hmeo 19350  df-fil 19441  df-fm 19533  df-flim 19534  df-flf 19535  df-xms 19917  df-ms 19918  df-tms 19919  df-cncf 20476  df-0p 21170  df-limc 21363  df-dv 21364  df-ply 21678  df-idp 21679  df-coe 21680  df-dgr 21681  df-log 22030  df-cxp 22031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator