MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppxpfi Structured version   Unicode version

Theorem fsuppxpfi 7848
Description: The cartesian product of two finitely supported functions is finite. (Contributed by AV, 17-Jul-2019.)
Assertion
Ref Expression
fsuppxpfi  |-  ( ( F finSupp  Z  /\  G finSupp  Z
)  ->  ( ( F supp  Z )  X.  ( G supp  Z ) )  e. 
Fin )

Proof of Theorem fsuppxpfi
StepHypRef Expression
1 id 22 . . 3  |-  ( F finSupp  Z  ->  F finSupp  Z )
21fsuppimpd 7838 . 2  |-  ( F finSupp  Z  ->  ( F supp  Z
)  e.  Fin )
3 id 22 . . 3  |-  ( G finSupp  Z  ->  G finSupp  Z )
43fsuppimpd 7838 . 2  |-  ( G finSupp  Z  ->  ( G supp  Z
)  e.  Fin )
5 xpfi 7793 . 2  |-  ( ( ( F supp  Z )  e.  Fin  /\  ( G supp  Z )  e.  Fin )  ->  ( ( F supp 
Z )  X.  ( G supp  Z ) )  e. 
Fin )
62, 4, 5syl2an 477 1  |-  ( ( F finSupp  Z  /\  G finSupp  Z
)  ->  ( ( F supp  Z )  X.  ( G supp  Z ) )  e. 
Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1804   class class class wbr 4437    X. cxp 4987  (class class class)co 6281   supp csupp 6903   Fincfn 7518   finSupp cfsupp 7831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-en 7519  df-fin 7522  df-fsupp 7832
This theorem is referenced by:  mplsubrglem  17974
  Copyright terms: Public domain W3C validator