MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppxpfi Structured version   Unicode version

Theorem fsuppxpfi 7838
Description: The cartesian product of two finitely supported functions is finite. (Contributed by AV, 17-Jul-2019.)
Assertion
Ref Expression
fsuppxpfi  |-  ( ( F finSupp  Z  /\  G finSupp  Z
)  ->  ( ( F supp  Z )  X.  ( G supp  Z ) )  e. 
Fin )

Proof of Theorem fsuppxpfi
StepHypRef Expression
1 id 22 . . 3  |-  ( F finSupp  Z  ->  F finSupp  Z )
21fsuppimpd 7828 . 2  |-  ( F finSupp  Z  ->  ( F supp  Z
)  e.  Fin )
3 id 22 . . 3  |-  ( G finSupp  Z  ->  G finSupp  Z )
43fsuppimpd 7828 . 2  |-  ( G finSupp  Z  ->  ( G supp  Z
)  e.  Fin )
5 xpfi 7783 . 2  |-  ( ( ( F supp  Z )  e.  Fin  /\  ( G supp  Z )  e.  Fin )  ->  ( ( F supp 
Z )  X.  ( G supp  Z ) )  e. 
Fin )
62, 4, 5syl2an 475 1  |-  ( ( F finSupp  Z  /\  G finSupp  Z
)  ->  ( ( F supp  Z )  X.  ( G supp  Z ) )  e. 
Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    e. wcel 1823   class class class wbr 4439    X. cxp 4986  (class class class)co 6270   supp csupp 6891   Fincfn 7509   finSupp cfsupp 7821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-fin 7513  df-fsupp 7822
This theorem is referenced by:  mplsubrglem  18295
  Copyright terms: Public domain W3C validator