Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppeq Unicode version

Theorem fsuppeq 27127
Description: Two ways of writing the support of a function with known codomain. MOVABLE SHORTEN nn0supp (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
fsuppeq  |-  ( F : I --> S  -> 
( `' F "
( _V  \  { X } ) )  =  ( `' F "
( S  \  { X } ) ) )

Proof of Theorem fsuppeq
StepHypRef Expression
1 invdif 3542 . . 3  |-  ( S  i^i  ( _V  \  { X } ) )  =  ( S  \  { X } )
21imaeq2i 5160 . 2  |-  ( `' F " ( S  i^i  ( _V  \  { X } ) ) )  =  ( `' F " ( S 
\  { X }
) )
3 ffun 5552 . . . 4  |-  ( F : I --> S  ->  Fun  F )
4 inpreima 5816 . . . 4  |-  ( Fun 
F  ->  ( `' F " ( S  i^i  ( _V  \  { X } ) ) )  =  ( ( `' F " S )  i^i  ( `' F " ( _V  \  { X } ) ) ) )
53, 4syl 16 . . 3  |-  ( F : I --> S  -> 
( `' F "
( S  i^i  ( _V  \  { X }
) ) )  =  ( ( `' F " S )  i^i  ( `' F " ( _V 
\  { X }
) ) ) )
6 cnvimass 5183 . . . . 5  |-  ( `' F " ( _V 
\  { X }
) )  C_  dom  F
7 fdm 5554 . . . . . 6  |-  ( F : I --> S  ->  dom  F  =  I )
8 fimacnv 5821 . . . . . 6  |-  ( F : I --> S  -> 
( `' F " S )  =  I )
97, 8eqtr4d 2439 . . . . 5  |-  ( F : I --> S  ->  dom  F  =  ( `' F " S ) )
106, 9syl5sseq 3356 . . . 4  |-  ( F : I --> S  -> 
( `' F "
( _V  \  { X } ) )  C_  ( `' F " S ) )
11 sseqin2 3520 . . . 4  |-  ( ( `' F " ( _V 
\  { X }
) )  C_  ( `' F " S )  <-> 
( ( `' F " S )  i^i  ( `' F " ( _V 
\  { X }
) ) )  =  ( `' F "
( _V  \  { X } ) ) )
1210, 11sylib 189 . . 3  |-  ( F : I --> S  -> 
( ( `' F " S )  i^i  ( `' F " ( _V 
\  { X }
) ) )  =  ( `' F "
( _V  \  { X } ) ) )
135, 12eqtrd 2436 . 2  |-  ( F : I --> S  -> 
( `' F "
( S  i^i  ( _V  \  { X }
) ) )  =  ( `' F "
( _V  \  { X } ) ) )
142, 13syl5reqr 2451 1  |-  ( F : I --> S  -> 
( `' F "
( _V  \  { X } ) )  =  ( `' F "
( S  \  { X } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649   _Vcvv 2916    \ cdif 3277    i^i cin 3279    C_ wss 3280   {csn 3774   `'ccnv 4836   dom cdm 4837   "cima 4840   Fun wfun 5407   -->wf 5409
This theorem is referenced by:  pwfi2f1o  27128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421
  Copyright terms: Public domain W3C validator