Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppeq Structured version   Unicode version

Theorem fsuppeq 29597
Description: Two ways of writing the support of a function with known codomain. MOVABLE SHORTEN nn0supp (Contributed by Stefan O'Rear, 9-Jul-2015.) (New usage is discouraged.) Use frnsuppeq 6811 instead.
Assertion
Ref Expression
fsuppeq  |-  ( F : I --> S  -> 
( `' F "
( _V  \  { X } ) )  =  ( `' F "
( S  \  { X } ) ) )

Proof of Theorem fsuppeq
StepHypRef Expression
1 invdif 3698 . . 3  |-  ( S  i^i  ( _V  \  { X } ) )  =  ( S  \  { X } )
21imaeq2i 5274 . 2  |-  ( `' F " ( S  i^i  ( _V  \  { X } ) ) )  =  ( `' F " ( S 
\  { X }
) )
3 ffun 5668 . . . 4  |-  ( F : I --> S  ->  Fun  F )
4 inpreima 5938 . . . 4  |-  ( Fun 
F  ->  ( `' F " ( S  i^i  ( _V  \  { X } ) ) )  =  ( ( `' F " S )  i^i  ( `' F " ( _V  \  { X } ) ) ) )
53, 4syl 16 . . 3  |-  ( F : I --> S  -> 
( `' F "
( S  i^i  ( _V  \  { X }
) ) )  =  ( ( `' F " S )  i^i  ( `' F " ( _V 
\  { X }
) ) ) )
6 cnvimass 5296 . . . . 5  |-  ( `' F " ( _V 
\  { X }
) )  C_  dom  F
7 fdm 5670 . . . . . 6  |-  ( F : I --> S  ->  dom  F  =  I )
8 fimacnv 5943 . . . . . 6  |-  ( F : I --> S  -> 
( `' F " S )  =  I )
97, 8eqtr4d 2498 . . . . 5  |-  ( F : I --> S  ->  dom  F  =  ( `' F " S ) )
106, 9syl5sseq 3511 . . . 4  |-  ( F : I --> S  -> 
( `' F "
( _V  \  { X } ) )  C_  ( `' F " S ) )
11 sseqin2 3676 . . . 4  |-  ( ( `' F " ( _V 
\  { X }
) )  C_  ( `' F " S )  <-> 
( ( `' F " S )  i^i  ( `' F " ( _V 
\  { X }
) ) )  =  ( `' F "
( _V  \  { X } ) ) )
1210, 11sylib 196 . . 3  |-  ( F : I --> S  -> 
( ( `' F " S )  i^i  ( `' F " ( _V 
\  { X }
) ) )  =  ( `' F "
( _V  \  { X } ) ) )
135, 12eqtrd 2495 . 2  |-  ( F : I --> S  -> 
( `' F "
( S  i^i  ( _V  \  { X }
) ) )  =  ( `' F "
( _V  \  { X } ) ) )
142, 13syl5reqr 2510 1  |-  ( F : I --> S  -> 
( `' F "
( _V  \  { X } ) )  =  ( `' F "
( S  \  { X } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370   _Vcvv 3076    \ cdif 3432    i^i cin 3434    C_ wss 3435   {csn 3984   `'ccnv 4946   dom cdm 4947   "cima 4950   Fun wfun 5519   -->wf 5521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pr 4638
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-br 4400  df-opab 4458  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-fv 5533
This theorem is referenced by:  pwfi2f1o  29598
  Copyright terms: Public domain W3C validator