MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumvma2 Structured version   Unicode version

Theorem fsumvma2 23245
Description: Apply fsumvma 23244 for the common case of all numbers less than a real number  A. (Contributed by Mario Carneiro, 30-Apr-2016.)
Hypotheses
Ref Expression
fsumvma2.1  |-  ( x  =  ( p ^
k )  ->  B  =  C )
fsumvma2.2  |-  ( ph  ->  A  e.  RR )
fsumvma2.3  |-  ( (
ph  /\  x  e.  ( 1 ... ( |_ `  A ) ) )  ->  B  e.  CC )
fsumvma2.4  |-  ( (
ph  /\  ( x  e.  ( 1 ... ( |_ `  A ) )  /\  (Λ `  x
)  =  0 ) )  ->  B  = 
0 )
Assertion
Ref Expression
fsumvma2  |-  ( ph  -> 
sum_ x  e.  (
1 ... ( |_ `  A ) ) B  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) C )
Distinct variable groups:    k, p, x, A    x, C    ph, k, p, x    B, k, p
Allowed substitution hints:    B( x)    C( k, p)

Proof of Theorem fsumvma2
StepHypRef Expression
1 fsumvma2.1 . 2  |-  ( x  =  ( p ^
k )  ->  B  =  C )
2 fzfid 12051 . 2  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  e.  Fin )
3 elfznn 11714 . . . 4  |-  ( x  e.  ( 1 ... ( |_ `  A
) )  ->  x  e.  NN )
43ssriv 3508 . . 3  |-  ( 1 ... ( |_ `  A ) )  C_  NN
54a1i 11 . 2  |-  ( ph  ->  ( 1 ... ( |_ `  A ) ) 
C_  NN )
6 fsumvma2.2 . . 3  |-  ( ph  ->  A  e.  RR )
7 ppifi 23135 . . 3  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
86, 7syl 16 . 2  |-  ( ph  ->  ( ( 0 [,] A )  i^i  Prime )  e.  Fin )
9 elin 3687 . . . . . 6  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  <->  ( p  e.  ( 0 [,] A
)  /\  p  e.  Prime ) )
109simprbi 464 . . . . 5  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  ->  p  e. 
Prime )
11 elfznn 11714 . . . . 5  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
1210, 11anim12i 566 . . . 4  |-  ( ( p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )  -> 
( p  e.  Prime  /\  k  e.  NN ) )
1312pm4.71ri 633 . . 3  |-  ( ( p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )  <->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ) ) )
146adantr 465 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  A  e.  RR )
15 prmnn 14079 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  NN )
1615ad2antrl 727 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  p  e.  NN )
17 nnnn0 10802 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
1817ad2antll 728 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  k  e.  NN0 )
1916, 18nnexpcld 12299 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
p ^ k )  e.  NN )
2019nnzd 10965 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
p ^ k )  e.  ZZ )
21 flge 11910 . . . . . 6  |-  ( ( A  e.  RR  /\  ( p ^ k
)  e.  ZZ )  ->  ( ( p ^ k )  <_  A 
<->  ( p ^ k
)  <_  ( |_ `  A ) ) )
2214, 20, 21syl2anc 661 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
( p ^ k
)  <_  A  <->  ( p ^ k )  <_ 
( |_ `  A
) ) )
23 simplrl 759 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  p  e.  Prime )
2423, 15syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  p  e.  NN )
2524nnrpd 11255 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  p  e.  RR+ )
26 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  k  e.  NN )
2726nnzd 10965 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  k  e.  ZZ )
28 relogexp 22736 . . . . . . . . . . 11  |-  ( ( p  e.  RR+  /\  k  e.  ZZ )  ->  ( log `  ( p ^
k ) )  =  ( k  x.  ( log `  p ) ) )
2925, 27, 28syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( log `  (
p ^ k ) )  =  ( k  x.  ( log `  p
) ) )
3029breq1d 4457 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( ( log `  ( p ^ k
) )  <_  ( log `  A )  <->  ( k  x.  ( log `  p
) )  <_  ( log `  A ) ) )
3126nnred 10551 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  k  e.  RR )
3214adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  A  e.  RR )
33 0red 9597 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  0  e.  RR )
3416nnred 10551 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  p  e.  RR )
3534adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  p  e.  RR )
3624nngt0d 10579 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  0  <  p
)
37 0red 9597 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  0  e.  RR )
38 nnnn0 10802 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  NN  ->  p  e.  NN0 )
3916, 38syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  p  e.  NN0 )
4039nn0ge0d 10855 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  0  <_  p )
41 elicc2 11589 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
42 df-3an 975 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  A )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  A ) )
4341, 42syl6bb 261 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( ( p  e.  RR  /\  0  <_  p )  /\  p  <_  A ) ) )
4443baibd 907 . . . . . . . . . . . . . . 15  |-  ( ( ( 0  e.  RR  /\  A  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] A )  <-> 
p  <_  A )
)
4537, 14, 34, 40, 44syl22anc 1229 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
p  e.  ( 0 [,] A )  <->  p  <_  A ) )
4645biimpa 484 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  p  <_  A
)
4733, 35, 32, 36, 46ltletrd 9741 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  0  <  A
)
4832, 47elrpd 11254 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  A  e.  RR+ )
4948relogcld 22764 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( log `  A
)  e.  RR )
50 prmuz2 14094 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
51 eluzelre 11092 . . . . . . . . . . . 12  |-  ( p  e.  ( ZZ>= `  2
)  ->  p  e.  RR )
52 eluz2b2 11154 . . . . . . . . . . . . 13  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
5352simprbi 464 . . . . . . . . . . . 12  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
5451, 53rplogcld 22770 . . . . . . . . . . 11  |-  ( p  e.  ( ZZ>= `  2
)  ->  ( log `  p )  e.  RR+ )
5523, 50, 543syl 20 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( log `  p
)  e.  RR+ )
5631, 49, 55lemuldivd 11301 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( ( k  x.  ( log `  p
) )  <_  ( log `  A )  <->  k  <_  ( ( log `  A
)  /  ( log `  p ) ) ) )
5749, 55rerpdivcld 11283 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( ( log `  A )  /  ( log `  p ) )  e.  RR )
58 flge 11910 . . . . . . . . . 10  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  k  e.  ZZ )  ->  (
k  <_  ( ( log `  A )  / 
( log `  p
) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
5957, 27, 58syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( k  <_ 
( ( log `  A
)  /  ( log `  p ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
6030, 56, 593bitrd 279 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( ( log `  ( p ^ k
) )  <_  ( log `  A )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
6119adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( p ^
k )  e.  NN )
6261nnrpd 11255 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( p ^
k )  e.  RR+ )
6362, 48logled 22768 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( ( p ^ k )  <_  A 
<->  ( log `  (
p ^ k ) )  <_  ( log `  A ) ) )
64 simprr 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  k  e.  NN )
65 nnuz 11117 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
6664, 65syl6eleq 2565 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  k  e.  ( ZZ>= `  1 )
)
6766adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  k  e.  (
ZZ>= `  1 ) )
6857flcld 11903 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  ZZ )
69 elfz5 11680 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  e.  ZZ )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
7067, 68, 69syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
7160, 63, 703bitr4d 285 . . . . . . 7  |-  ( ( ( ph  /\  (
p  e.  Prime  /\  k  e.  NN ) )  /\  p  e.  ( 0 [,] A ) )  ->  ( ( p ^ k )  <_  A 
<->  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )
7271pm5.32da 641 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
( p  e.  ( 0 [,] A )  /\  ( p ^
k )  <_  A
)  <->  ( p  e.  ( 0 [,] A
)  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ) ) )
7316nncnd 10552 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  p  e.  CC )
7473exp1d 12273 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
p ^ 1 )  =  p )
7516nnge1d 10578 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  1  <_  p )
7634, 75, 66leexp2ad 12310 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
p ^ 1 )  <_  ( p ^
k ) )
7774, 76eqbrtrrd 4469 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  p  <_  ( p ^ k
) )
7819nnred 10551 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
p ^ k )  e.  RR )
79 letr 9678 . . . . . . . . . 10  |-  ( ( p  e.  RR  /\  ( p ^ k
)  e.  RR  /\  A  e.  RR )  ->  ( ( p  <_ 
( p ^ k
)  /\  ( p ^ k )  <_  A )  ->  p  <_  A ) )
8034, 78, 14, 79syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
( p  <_  (
p ^ k )  /\  ( p ^
k )  <_  A
)  ->  p  <_  A ) )
8177, 80mpand 675 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
( p ^ k
)  <_  A  ->  p  <_  A ) )
8281, 45sylibrd 234 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
( p ^ k
)  <_  A  ->  p  e.  ( 0 [,] A ) ) )
8382pm4.71rd 635 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
( p ^ k
)  <_  A  <->  ( p  e.  ( 0 [,] A
)  /\  ( p ^ k )  <_  A ) ) )
849rbaib 904 . . . . . . . 8  |-  ( p  e.  Prime  ->  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  <->  p  e.  (
0 [,] A ) ) )
8584ad2antrl 727 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  <->  p  e.  ( 0 [,] A
) ) )
8685anbi1d 704 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( p  e.  ( 0 [,] A
)  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ) ) )
8772, 83, 863bitr4rd 286 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( p ^ k )  <_  A ) )
8819, 65syl6eleq 2565 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
p ^ k )  e.  ( ZZ>= `  1
) )
8914flcld 11903 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  ( |_ `  A )  e.  ZZ )
90 elfz5 11680 . . . . . 6  |-  ( ( ( p ^ k
)  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ZZ )  ->  (
( p ^ k
)  e.  ( 1 ... ( |_ `  A ) )  <->  ( p ^ k )  <_ 
( |_ `  A
) ) )
9188, 89, 90syl2anc 661 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
( p ^ k
)  e.  ( 1 ... ( |_ `  A ) )  <->  ( p ^ k )  <_ 
( |_ `  A
) ) )
9222, 87, 913bitr4d 285 . . . 4  |-  ( (
ph  /\  ( p  e.  Prime  /\  k  e.  NN ) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( p ^ k )  e.  ( 1 ... ( |_ `  A ) ) ) )
9392pm5.32da 641 . . 3  |-  ( ph  ->  ( ( ( p  e.  Prime  /\  k  e.  NN )  /\  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ) )  <-> 
( ( p  e. 
Prime  /\  k  e.  NN )  /\  ( p ^
k )  e.  ( 1 ... ( |_
`  A ) ) ) ) )
9413, 93syl5bb 257 . 2  |-  ( ph  ->  ( ( p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )  <->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  (
p ^ k )  e.  ( 1 ... ( |_ `  A
) ) ) ) )
95 fsumvma2.3 . 2  |-  ( (
ph  /\  x  e.  ( 1 ... ( |_ `  A ) ) )  ->  B  e.  CC )
96 fsumvma2.4 . 2  |-  ( (
ph  /\  ( x  e.  ( 1 ... ( |_ `  A ) )  /\  (Λ `  x
)  =  0 ) )  ->  B  = 
0 )
971, 2, 5, 8, 94, 95, 96fsumvma 23244 1  |-  ( ph  -> 
sum_ x  e.  (
1 ... ( |_ `  A ) ) B  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    i^i cin 3475    C_ wss 3476   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   Fincfn 7516   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    x. cmul 9497    < clt 9628    <_ cle 9629    / cdiv 10206   NNcn 10536   2c2 10585   NN0cn0 10795   ZZcz 10864   ZZ>=cuz 11082   RR+crp 11220   [,]cicc 11532   ...cfz 11672   |_cfl 11895   ^cexp 12134   sum_csu 13471   Primecprime 14076   logclog 22698  Λcvma 23121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-pi 13670  df-dvds 13848  df-gcd 14004  df-prm 14077  df-pc 14220  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-log 22700  df-vma 23127
This theorem is referenced by:  chpval2  23249  rplogsumlem2  23426  rpvmasumlem  23428
  Copyright terms: Public domain W3C validator