MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumtscopo Structured version   Unicode version

Theorem fsumtscopo 13367
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
fsumtscopo.1  |-  ( k  =  j  ->  A  =  B )
fsumtscopo.2  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
fsumtscopo.3  |-  ( k  =  M  ->  A  =  D )
fsumtscopo.4  |-  ( k  =  N  ->  A  =  E )
fsumtscopo.5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumtscopo.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
Assertion
Ref Expression
fsumtscopo  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
Distinct variable groups:    A, j    B, k    C, k    j, k, M    j, N, k    ph, j, k    D, k   
k, E
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)

Proof of Theorem fsumtscopo
StepHypRef Expression
1 fsumtscopo.5 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz1 11559 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
4 fsumtscopo.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
54ralrimiva 2822 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
6 fsumtscopo.3 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  D )
76eleq1d 2520 . . . . . . . 8  |-  ( k  =  M  ->  ( A  e.  CC  <->  D  e.  CC ) )
87rspcv 3165 . . . . . . 7  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  D  e.  CC ) )
93, 5, 8sylc 60 . . . . . 6  |-  ( ph  ->  D  e.  CC )
109adantr 465 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  D  e.  CC )
1110subidd 9808 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( D  -  D )  =  0 )
12 sum0 13300 . . . 4  |-  sum_ j  e.  (/)  ( B  -  C )  =  0
1311, 12syl6reqr 2511 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  (/)  ( B  -  C )  =  ( D  -  D ) )
14 oveq2 6198 . . . . . 6  |-  ( N  =  M  ->  ( M..^ N )  =  ( M..^ M ) )
1514adantl 466 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  ( M..^ M ) )
16 fzo0 11674 . . . . 5  |-  ( M..^ M )  =  (/)
1715, 16syl6eq 2508 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  (/) )
1817sumeq1d 13280 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  sum_ j  e.  (/)  ( B  -  C ) )
19 eqeq1 2455 . . . . . . . 8  |-  ( k  =  N  ->  (
k  =  M  <->  N  =  M ) )
20 fsumtscopo.4 . . . . . . . . 9  |-  ( k  =  N  ->  A  =  E )
2120eqeq1d 2453 . . . . . . . 8  |-  ( k  =  N  ->  ( A  =  D  <->  E  =  D ) )
2219, 21imbi12d 320 . . . . . . 7  |-  ( k  =  N  ->  (
( k  =  M  ->  A  =  D )  <->  ( N  =  M  ->  E  =  D ) ) )
2322, 6vtoclg 3126 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  ->  E  =  D ) )
2423imp 429 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  E  =  D )
251, 24sylan 471 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  E  =  D )
2625oveq2d 6206 . . 3  |-  ( (
ph  /\  N  =  M )  ->  ( D  -  E )  =  ( D  -  D ) )
2713, 18, 263eqtr4d 2502 . 2  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( D  -  E ) )
28 fzofi 11897 . . . . . 6  |-  ( M..^ N )  e.  Fin
2928a1i 11 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
30 elfzofz 11668 . . . . . . 7  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( M ... N ) )
3130adantl 466 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  ( M ... N ) )
325adantr 465 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  A. k  e.  ( M ... N ) A  e.  CC )
33 fsumtscopo.1 . . . . . . . 8  |-  ( k  =  j  ->  A  =  B )
3433eleq1d 2520 . . . . . . 7  |-  ( k  =  j  ->  ( A  e.  CC  <->  B  e.  CC ) )
3534rspcv 3165 . . . . . 6  |-  ( j  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  B  e.  CC ) )
3631, 32, 35sylc 60 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  B  e.  CC )
37 fzofzp1 11725 . . . . . . 7  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
3837adantl 466 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ( M ... N ) )
39 fsumtscopo.2 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
4039eleq1d 2520 . . . . . . 7  |-  ( k  =  ( j  +  1 )  ->  ( A  e.  CC  <->  C  e.  CC ) )
4140rspcv 3165 . . . . . 6  |-  ( ( j  +  1 )  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  C  e.  CC ) )
4238, 32, 41sylc 60 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  C  e.  CC )
4329, 36, 42fsumsub 13357 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C ) )
4443adantr 465 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C ) )
4533cbvsumv 13275 . . . . . 6  |-  sum_ k  e.  ( M..^ N ) A  =  sum_ j  e.  ( M..^ N ) B
46 eluzel2 10967 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
471, 46syl 16 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
48 eluzp1m1 10985 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
4947, 48sylan 471 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
50 eluzelz 10971 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
511, 50syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
5251adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ZZ )
53 fzoval 11655 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
5452, 53syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
55 fzossfz 11671 . . . . . . . . . . 11  |-  ( M..^ N )  C_  ( M ... N )
5654, 55syl6eqssr 3505 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
5756sselda 3454 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  k  e.  ( M ... N
) )
584adantlr 714 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... N
) )  ->  A  e.  CC )
5957, 58syldan 470 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
6049, 59, 6fsum1p 13324 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) A  =  ( D  +  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) A ) )
6154sumeq1d 13280 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) A  =  sum_ k  e.  ( M ... ( N  -  1 ) ) A )
62 fzoval 11655 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( M  +  1 )..^ N )  =  ( ( M  + 
1 ) ... ( N  -  1 ) ) )
6352, 62syl 16 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
6463sumeq1d 13280 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) A  =  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) A )
6564oveq2d 6206 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  =  ( D  +  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A ) )
6660, 61, 653eqtr4d 2502 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) A  =  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
6745, 66syl5eqr 2506 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) B  =  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
68 simpr 461 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
69 fzp1ss 11607 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
7047, 69syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
7170sselda 3454 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
7271, 4syldan 470 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
7372adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
7468, 73, 20fsumm1 13322 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) A  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E ) )
75 1zzd 10778 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
7647peano2zd 10851 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
7775, 76, 51, 72, 39fsumshftm 13350 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) A  =  sum_ j  e.  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) ) C )
7847zcnd 10849 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  CC )
79 ax-1cn 9441 . . . . . . . . . . . 12  |-  1  e.  CC
80 pncan 9717 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
8178, 79, 80sylancl 662 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
8281oveq1d 6205 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) )  =  ( M ... ( N  - 
1 ) ) )
8351, 53syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( M..^ N )  =  ( M ... ( N  -  1
) ) )
8482, 83eqtr4d 2495 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) )  =  ( M..^ N ) )
8584sumeq1d 13280 . . . . . . . 8  |-  ( ph  -> 
sum_ j  e.  ( ( ( M  + 
1 )  -  1 ) ... ( N  -  1 ) ) C  =  sum_ j  e.  ( M..^ N ) C )
8677, 85eqtrd 2492 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) A  =  sum_ j  e.  ( M..^ N ) C )
8786adantr 465 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) A  =  sum_ j  e.  ( M..^ N ) C )
8851, 62syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
8988sumeq1d 13280 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ N ) A  =  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A )
9089oveq1d 6205 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) A  +  E )  =  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E ) )
91 fzofi 11897 . . . . . . . . . . 11  |-  ( ( M  +  1 )..^ N )  e.  Fin
9291a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 )..^ N )  e.  Fin )
93 elfzofz 11668 . . . . . . . . . . 11  |-  ( k  e.  ( ( M  +  1 )..^ N
)  ->  k  e.  ( ( M  + 
1 ) ... N
) )
9493, 72sylan2 474 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  A  e.  CC )
9592, 94fsumcl 13312 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ N ) A  e.  CC )
96 eluzfz2 11560 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
971, 96syl 16 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( M ... N ) )
9820eleq1d 2520 . . . . . . . . . . 11  |-  ( k  =  N  ->  ( A  e.  CC  <->  E  e.  CC ) )
9998rspcv 3165 . . . . . . . . . 10  |-  ( N  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  E  e.  CC ) )
10097, 5, 99sylc 60 . . . . . . . . 9  |-  ( ph  ->  E  e.  CC )
10195, 100addcomd 9672 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10290, 101eqtr3d 2494 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
103102adantr 465 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  - 
1 ) ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10474, 87, 1033eqtr3d 2500 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) C  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10567, 104oveq12d 6208 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C )  =  ( ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) ) )
1069, 100, 95pnpcan2d 9858 . . . . 5  |-  ( ph  ->  ( ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )  =  ( D  -  E ) )
107106adantr 465 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( D  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) A ) )  =  ( D  -  E
) )
108105, 107eqtrd 2492 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C )  =  ( D  -  E ) )
10944, 108eqtrd 2492 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( D  -  E ) )
110 uzp1 10995 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
1111, 110syl 16 . 2  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
11227, 109, 111mpjaodan 784 1  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795    C_ wss 3426   (/)c0 3735   ` cfv 5516  (class class class)co 6190   Fincfn 7410   CCcc 9381   0cc0 9383   1c1 9384    + caddc 9386    - cmin 9696   ZZcz 10747   ZZ>=cuz 10962   ...cfz 11538  ..^cfzo 11649   sum_csu 13265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-sup 7792  df-oi 7825  df-card 8210  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-2 10481  df-3 10482  df-n0 10681  df-z 10748  df-uz 10963  df-rp 11093  df-fz 11539  df-fzo 11650  df-seq 11908  df-exp 11967  df-hash 12205  df-cj 12690  df-re 12691  df-im 12692  df-sqr 12826  df-abs 12827  df-clim 13068  df-sum 13266
This theorem is referenced by:  fsumtscopo2  13368  fsumtscop  13369  geoserg  13430  dchrisumlem2  22855  stirlinglem12  30018
  Copyright terms: Public domain W3C validator