MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumss Structured version   Unicode version

Theorem fsumss 13188
Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
sumss.1  |-  ( ph  ->  A  C_  B )
sumss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
sumss.3  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
fsumss.4  |-  ( ph  ->  B  e.  Fin )
Assertion
Ref Expression
fsumss  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Distinct variable groups:    A, k    B, k    ph, k
Allowed substitution hint:    C( k)

Proof of Theorem fsumss
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumss.1 . . . . 5  |-  ( ph  ->  A  C_  B )
21adantr 462 . . . 4  |-  ( (
ph  /\  B  =  (/) )  ->  A  C_  B
)
3 sumss.2 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
43adantlr 709 . . . 4  |-  ( ( ( ph  /\  B  =  (/) )  /\  k  e.  A )  ->  C  e.  CC )
5 sumss.3 . . . . 5  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
65adantlr 709 . . . 4  |-  ( ( ( ph  /\  B  =  (/) )  /\  k  e.  ( B  \  A
) )  ->  C  =  0 )
7 simpr 458 . . . . 5  |-  ( (
ph  /\  B  =  (/) )  ->  B  =  (/) )
8 0ss 3656 . . . . 5  |-  (/)  C_  ( ZZ>=
`  0 )
97, 8syl6eqss 3396 . . . 4  |-  ( (
ph  /\  B  =  (/) )  ->  B  C_  ( ZZ>=
`  0 ) )
102, 4, 6, 9sumss 13187 . . 3  |-  ( (
ph  /\  B  =  (/) )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
1110ex 434 . 2  |-  ( ph  ->  ( B  =  (/)  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C ) )
12 cnvimass 5179 . . . . . . . . 9  |-  ( `' f " A ) 
C_  dom  f
13 simprr 751 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B )
14 f1of 5631 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) ) --> B )
1513, 14syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) --> B )
16 fdm 5553 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  B
) ) --> B  ->  dom  f  =  (
1 ... ( # `  B
) ) )
1715, 16syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  dom  f  =  ( 1 ... ( # `  B
) ) )
1812, 17syl5sseq 3394 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( `' f " A
)  C_  ( 1 ... ( # `  B
) ) )
19 ffn 5549 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  B
) ) --> B  -> 
f  Fn  ( 1 ... ( # `  B
) ) )
2015, 19syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f  Fn  ( 1 ... ( # `
 B ) ) )
21 elpreima 5813 . . . . . . . . . . . 12  |-  ( f  Fn  ( 1 ... ( # `  B
) )  ->  (
n  e.  ( `' f " A )  <-> 
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A ) ) )
2220, 21syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( `' f " A )  <-> 
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A ) ) )
2315ffvelrnda 5833 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( # `  B
) ) )  -> 
( f `  n
)  e.  B )
2423ex 434 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( 1 ... ( # `  B
) )  ->  (
f `  n )  e.  B ) )
2524adantrd 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A )  ->  ( f `  n )  e.  B
) )
2622, 25sylbid 215 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( `' f " A )  ->  ( f `  n )  e.  B
) )
2726imp 429 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( f `  n )  e.  B
)
283ex 434 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
2928adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  ->  C  e.  CC )
)
30 eldif 3328 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( B  \  A )  <->  ( k  e.  B  /\  -.  k  e.  A ) )
31 0cn 9368 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
325, 31syl6eqel 2523 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  CC )
3330, 32sylan2br 473 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  C  e.  CC )
3433expr 612 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  C  e.  CC ) )
3529, 34pm2.61d 158 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
36 eqid 2435 . . . . . . . . . . . 12  |-  ( k  e.  B  |->  C )  =  ( k  e.  B  |->  C )
3735, 36fmptd 5857 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  B  |->  C ) : B --> CC )
3837adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
k  e.  B  |->  C ) : B --> CC )
3938ffvelrnda 5833 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  ( f `  n
)  e.  B )  ->  ( ( k  e.  B  |->  C ) `
 ( f `  n ) )  e.  CC )
4027, 39syldan 467 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( ( k  e.  B  |->  C ) `
 ( f `  n ) )  e.  CC )
41 eldifi 3468 . . . . . . . . . . . 12  |-  ( n  e.  ( ( 1 ... ( # `  B
) )  \  ( `' f " A
) )  ->  n  e.  ( 1 ... ( # `
 B ) ) )
4241, 23sylan2 471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( f `  n
)  e.  B )
43 eldifn 3469 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( 1 ... ( # `  B
) )  \  ( `' f " A
) )  ->  -.  n  e.  ( `' f " A ) )
4443adantl 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  -.  n  e.  ( `' f " A
) )
4522adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( n  e.  ( `' f " A
)  <->  ( n  e.  ( 1 ... ( # `
 B ) )  /\  ( f `  n )  e.  A
) ) )
4641adantl 463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  n  e.  ( 1 ... ( # `  B
) ) )
4746biantrurd 505 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( f `  n )  e.  A  <->  ( n  e.  ( 1 ... ( # `  B
) )  /\  (
f `  n )  e.  A ) ) )
4845, 47bitr4d 256 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( n  e.  ( `' f " A
)  <->  ( f `  n )  e.  A
) )
4944, 48mtbid 300 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  -.  ( f `  n
)  e.  A )
5042, 49eldifd 3329 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( f `  n
)  e.  ( B 
\  A ) )
51 difss 3473 . . . . . . . . . . . . 13  |-  ( B 
\  A )  C_  B
52 resmpt 5146 . . . . . . . . . . . . 13  |-  ( ( B  \  A ) 
C_  B  ->  (
( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A
)  |->  C ) )
5351, 52ax-mp 5 . . . . . . . . . . . 12  |-  ( ( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A ) 
|->  C )
5453fveq1i 5682 . . . . . . . . . . 11  |-  ( ( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `
 ( f `  n ) )  =  ( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )
55 fvres 5694 . . . . . . . . . . 11  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `  ( f `
 n ) )  =  ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
5654, 55syl5eqr 2481 . . . . . . . . . 10  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
5750, 56syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  =  ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
58 c0ex 9370 . . . . . . . . . . . . . . 15  |-  0  e.  _V
5958elsnc2 3898 . . . . . . . . . . . . . 14  |-  ( C  e.  { 0 }  <-> 
C  =  0 )
605, 59sylibr 212 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  { 0 } )
61 eqid 2435 . . . . . . . . . . . . 13  |-  ( k  e.  ( B  \  A )  |->  C )  =  ( k  e.  ( B  \  A
)  |->  C )
6260, 61fmptd 5857 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( B  \  A ) 
|->  C ) : ( B  \  A ) --> { 0 } )
6362ad2antrr 720 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( k  e.  ( B  \  A ) 
|->  C ) : ( B  \  A ) --> { 0 } )
6463, 50ffvelrnd 5834 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  e.  {
0 } )
65 elsni 3892 . . . . . . . . . 10  |-  ( ( ( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  e.  { 0 }  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  =  0 )
6664, 65syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  =  0 )
6757, 66eqtr3d 2469 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  B  |->  C ) `  ( f `  n
) )  =  0 )
68 fzssuz 11488 . . . . . . . . 9  |-  ( 1 ... ( # `  B
) )  C_  ( ZZ>=
`  1 )
6968a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
1 ... ( # `  B
) )  C_  ( ZZ>=
`  1 ) )
7018, 40, 67, 69sumss 13187 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ n  e.  ( `' f " A ) ( ( k  e.  B  |->  C ) `  ( f `
 n ) )  =  sum_ n  e.  ( 1 ... ( # `  B ) ) ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
711ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  A  C_  B )
72 resmpt 5146 . . . . . . . . . . . 12  |-  ( A 
C_  B  ->  (
( k  e.  B  |->  C )  |`  A )  =  ( k  e.  A  |->  C ) )
7371, 72syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( k  e.  B  |->  C )  |`  A )  =  ( k  e.  A  |->  C ) )
7473fveq1d 5683 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  A  |->  C ) `  m ) )
75 fvres 5694 . . . . . . . . . . 11  |-  ( m  e.  A  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
7675adantl 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
7774, 76eqtr3d 2469 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  C ) `  m )  =  ( ( k  e.  B  |->  C ) `  m
) )
7877sumeq2dv 13166 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ m  e.  A  ( ( k  e.  B  |->  C ) `  m ) )
79 fveq2 5681 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  B  |->  C ) `  m
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
80 fzfid 11781 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
1 ... ( # `  B
) )  e.  Fin )
81 ssfi 7523 . . . . . . . . . 10  |-  ( ( ( 1 ... ( # `
 B ) )  e.  Fin  /\  ( `' f " A
)  C_  ( 1 ... ( # `  B
) ) )  -> 
( `' f " A )  e.  Fin )
8280, 18, 81syl2anc 656 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( `' f " A
)  e.  Fin )
83 f1of1 5630 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) )
-1-1-> B )
8413, 83syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -1-1-> B )
85 f1ores 5645 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  B
) ) -1-1-> B  /\  ( `' f " A
)  C_  ( 1 ... ( # `  B
) ) )  -> 
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) ) )
8684, 18, 85syl2anc 656 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f  |`  ( `' f
" A ) ) : ( `' f
" A ) -1-1-onto-> ( f
" ( `' f
" A ) ) )
87 f1ofo 5638 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) )
-onto-> B )
8813, 87syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -onto-> B )
891adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  A  C_  B )
90 foimacnv 5648 . . . . . . . . . . . 12  |-  ( ( f : ( 1 ... ( # `  B
) ) -onto-> B  /\  A  C_  B )  -> 
( f " ( `' f " A
) )  =  A )
9188, 89, 90syl2anc 656 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f " ( `' f " A ) )  =  A )
92 f1oeq3 5624 . . . . . . . . . . 11  |-  ( ( f " ( `' f " A ) )  =  A  -> 
( ( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
9391, 92syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
9486, 93mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f  |`  ( `' f
" A ) ) : ( `' f
" A ) -1-1-onto-> A )
95 fvres 5694 . . . . . . . . . 10  |-  ( n  e.  ( `' f
" A )  -> 
( ( f  |`  ( `' f " A
) ) `  n
)  =  ( f `
 n ) )
9695adantl 463 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( ( f  |`  ( `' f " A ) ) `  n )  =  ( f `  n ) )
9789sselda 3346 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  m  e.  B )
9838ffvelrnda 5833 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  B )  ->  ( ( k  e.  B  |->  C ) `  m )  e.  CC )
9997, 98syldan 467 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( k  e.  B  |->  C ) `  m )  e.  CC )
10079, 82, 94, 96, 99fsumf1o 13186 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( (
k  e.  B  |->  C ) `  m )  =  sum_ n  e.  ( `' f " A
) ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
10178, 100eqtrd 2467 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ n  e.  ( `' f " A
) ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
102 eqidd 2436 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( # `  B
) ) )  -> 
( f `  n
)  =  ( f `
 n ) )
10379, 80, 13, 102, 98fsumf1o 13186 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ m  e.  B  ( (
k  e.  B  |->  C ) `  m )  =  sum_ n  e.  ( 1 ... ( # `  B ) ) ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
10470, 101, 1033eqtr4d 2477 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m ) )
105 sumfc 13172 . . . . . 6  |-  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
106 sumfc 13172 . . . . . 6  |-  sum_ m  e.  B  ( (
k  e.  B  |->  C ) `  m )  =  sum_ k  e.  B  C
107104, 105, 1063eqtr3g 2490 . . . . 5  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
108107expr 612 . . . 4  |-  ( (
ph  /\  ( # `  B
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C ) )
109108exlimdv 1691 . . 3  |-  ( (
ph  /\  ( # `  B
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
) )
110109expimpd 600 . 2  |-  ( ph  ->  ( ( ( # `  B )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
) )
111 fsumss.4 . . 3  |-  ( ph  ->  B  e.  Fin )
112 fz1f1o 13173 . . 3  |-  ( B  e.  Fin  ->  ( B  =  (/)  \/  (
( # `  B )  e.  NN  /\  E. f  f : ( 1 ... ( # `  B ) ) -1-1-onto-> B ) ) )
113111, 112syl 16 . 2  |-  ( ph  ->  ( B  =  (/)  \/  ( ( # `  B
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  B ) ) -1-1-onto-> B ) ) )
11411, 110, 113mpjaod 381 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364   E.wex 1591    e. wcel 1757    \ cdif 3315    C_ wss 3318   (/)c0 3627   {csn 3867    e. cmpt 4340   `'ccnv 4828   dom cdm 4829    |` cres 4831   "cima 4832    Fn wfn 5403   -->wf 5404   -1-1->wf1 5405   -onto->wfo 5406   -1-1-onto->wf1o 5407   ` cfv 5408  (class class class)co 6082   Fincfn 7300   CCcc 9270   0cc0 9272   1c1 9273   NNcn 10312   ZZ>=cuz 10851   ...cfz 11426   #chash 12089   sum_csu 13149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-inf2 7837  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-se 4669  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-isom 5417  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-om 6468  df-1st 6568  df-2nd 6569  df-recs 6820  df-rdg 6854  df-1o 6910  df-oadd 6914  df-er 7091  df-en 7301  df-dom 7302  df-sdom 7303  df-fin 7304  df-sup 7681  df-oi 7714  df-card 8099  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-3 10371  df-n0 10570  df-z 10637  df-uz 10852  df-rp 10982  df-fz 11427  df-fzo 11535  df-seq 11793  df-exp 11852  df-hash 12090  df-cj 12574  df-re 12575  df-im 12576  df-sqr 12710  df-abs 12711  df-clim 12952  df-sum 13150
This theorem is referenced by:  sumss2  13189  rrxmval  20748  rrxmetlem  20750  itg1val2  21006  itg1addlem4  21021  itg1addlem5  21022  ply1termlem  21558  plyaddlem1  21568  plymullem1  21569  coeeulem  21579  coeidlem  21592  coeid3  21595  coefv0  21602  coemulhi  21608  coemulc  21609  dvply1  21637  vieta1lem2  21664  dvtaylp  21722  pserdvlem2  21780  basellem3  22307  musum  22418  muinv  22420  fsumvma  22439  chpub  22446  logexprlim  22451  dchrsum  22495  chebbnd1lem1  22605  rpvmasumlem  22623  dchrisum0fno1  22647  rplogsum  22663  indsum  26335  eulerpartlemgs2  26613  flcidc  29378
  Copyright terms: Public domain W3C validator