MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumss Structured version   Unicode version

Theorem fsumss 13784
Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
sumss.1  |-  ( ph  ->  A  C_  B )
sumss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
sumss.3  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
fsumss.4  |-  ( ph  ->  B  e.  Fin )
Assertion
Ref Expression
fsumss  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Distinct variable groups:    A, k    B, k    ph, k
Allowed substitution hint:    C( k)

Proof of Theorem fsumss
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumss.1 . . . . 5  |-  ( ph  ->  A  C_  B )
21adantr 467 . . . 4  |-  ( (
ph  /\  B  =  (/) )  ->  A  C_  B
)
3 sumss.2 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
43adantlr 720 . . . 4  |-  ( ( ( ph  /\  B  =  (/) )  /\  k  e.  A )  ->  C  e.  CC )
5 sumss.3 . . . . 5  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
65adantlr 720 . . . 4  |-  ( ( ( ph  /\  B  =  (/) )  /\  k  e.  ( B  \  A
) )  ->  C  =  0 )
7 simpr 463 . . . . 5  |-  ( (
ph  /\  B  =  (/) )  ->  B  =  (/) )
8 0ss 3792 . . . . 5  |-  (/)  C_  ( ZZ>=
`  0 )
97, 8syl6eqss 3515 . . . 4  |-  ( (
ph  /\  B  =  (/) )  ->  B  C_  ( ZZ>=
`  0 ) )
102, 4, 6, 9sumss 13783 . . 3  |-  ( (
ph  /\  B  =  (/) )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
1110ex 436 . 2  |-  ( ph  ->  ( B  =  (/)  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C ) )
12 cnvimass 5205 . . . . . . . . 9  |-  ( `' f " A ) 
C_  dom  f
13 simprr 765 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B )
14 f1of 5829 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) ) --> B )
1513, 14syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) --> B )
16 fdm 5748 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  B
) ) --> B  ->  dom  f  =  (
1 ... ( # `  B
) ) )
1715, 16syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  dom  f  =  ( 1 ... ( # `  B
) ) )
1812, 17syl5sseq 3513 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( `' f " A
)  C_  ( 1 ... ( # `  B
) ) )
19 ffn 5744 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  B
) ) --> B  -> 
f  Fn  ( 1 ... ( # `  B
) ) )
2015, 19syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f  Fn  ( 1 ... ( # `
 B ) ) )
21 elpreima 6015 . . . . . . . . . . . 12  |-  ( f  Fn  ( 1 ... ( # `  B
) )  ->  (
n  e.  ( `' f " A )  <-> 
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A ) ) )
2220, 21syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( `' f " A )  <-> 
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A ) ) )
2315ffvelrnda 6035 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( # `  B
) ) )  -> 
( f `  n
)  e.  B )
2423ex 436 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( 1 ... ( # `  B
) )  ->  (
f `  n )  e.  B ) )
2524adantrd 470 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A )  ->  ( f `  n )  e.  B
) )
2622, 25sylbid 219 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( `' f " A )  ->  ( f `  n )  e.  B
) )
2726imp 431 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( f `  n )  e.  B
)
283ex 436 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
2928adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  ->  C  e.  CC )
)
30 eldif 3447 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( B  \  A )  <->  ( k  e.  B  /\  -.  k  e.  A ) )
31 0cn 9637 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
325, 31syl6eqel 2519 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  CC )
3330, 32sylan2br 479 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  C  e.  CC )
3433expr 619 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  C  e.  CC ) )
3529, 34pm2.61d 162 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
36 eqid 2423 . . . . . . . . . . . 12  |-  ( k  e.  B  |->  C )  =  ( k  e.  B  |->  C )
3735, 36fmptd 6059 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  B  |->  C ) : B --> CC )
3837adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
k  e.  B  |->  C ) : B --> CC )
3938ffvelrnda 6035 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  ( f `  n
)  e.  B )  ->  ( ( k  e.  B  |->  C ) `
 ( f `  n ) )  e.  CC )
4027, 39syldan 473 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( ( k  e.  B  |->  C ) `
 ( f `  n ) )  e.  CC )
41 eldifi 3588 . . . . . . . . . . . 12  |-  ( n  e.  ( ( 1 ... ( # `  B
) )  \  ( `' f " A
) )  ->  n  e.  ( 1 ... ( # `
 B ) ) )
4241, 23sylan2 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( f `  n
)  e.  B )
43 eldifn 3589 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( 1 ... ( # `  B
) )  \  ( `' f " A
) )  ->  -.  n  e.  ( `' f " A ) )
4443adantl 468 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  -.  n  e.  ( `' f " A
) )
4522adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( n  e.  ( `' f " A
)  <->  ( n  e.  ( 1 ... ( # `
 B ) )  /\  ( f `  n )  e.  A
) ) )
4641adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  n  e.  ( 1 ... ( # `  B
) ) )
4746biantrurd 511 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( f `  n )  e.  A  <->  ( n  e.  ( 1 ... ( # `  B
) )  /\  (
f `  n )  e.  A ) ) )
4845, 47bitr4d 260 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( n  e.  ( `' f " A
)  <->  ( f `  n )  e.  A
) )
4944, 48mtbid 302 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  -.  ( f `  n
)  e.  A )
5042, 49eldifd 3448 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( f `  n
)  e.  ( B 
\  A ) )
51 difss 3593 . . . . . . . . . . . . 13  |-  ( B 
\  A )  C_  B
52 resmpt 5171 . . . . . . . . . . . . 13  |-  ( ( B  \  A ) 
C_  B  ->  (
( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A
)  |->  C ) )
5351, 52ax-mp 5 . . . . . . . . . . . 12  |-  ( ( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A ) 
|->  C )
5453fveq1i 5880 . . . . . . . . . . 11  |-  ( ( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `
 ( f `  n ) )  =  ( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )
55 fvres 5893 . . . . . . . . . . 11  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `  ( f `
 n ) )  =  ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
5654, 55syl5eqr 2478 . . . . . . . . . 10  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
5750, 56syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  =  ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
58 c0ex 9639 . . . . . . . . . . . . . . 15  |-  0  e.  _V
5958elsnc2 4028 . . . . . . . . . . . . . 14  |-  ( C  e.  { 0 }  <-> 
C  =  0 )
605, 59sylibr 216 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  { 0 } )
61 eqid 2423 . . . . . . . . . . . . 13  |-  ( k  e.  ( B  \  A )  |->  C )  =  ( k  e.  ( B  \  A
)  |->  C )
6260, 61fmptd 6059 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( B  \  A ) 
|->  C ) : ( B  \  A ) --> { 0 } )
6362ad2antrr 731 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( k  e.  ( B  \  A ) 
|->  C ) : ( B  \  A ) --> { 0 } )
6463, 50ffvelrnd 6036 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  e.  {
0 } )
65 elsni 4022 . . . . . . . . . 10  |-  ( ( ( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  e.  { 0 }  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  =  0 )
6664, 65syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  =  0 )
6757, 66eqtr3d 2466 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  B  |->  C ) `  ( f `  n
) )  =  0 )
68 fzssuz 11841 . . . . . . . . 9  |-  ( 1 ... ( # `  B
) )  C_  ( ZZ>=
`  1 )
6968a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
1 ... ( # `  B
) )  C_  ( ZZ>=
`  1 ) )
7018, 40, 67, 69sumss 13783 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ n  e.  ( `' f " A ) ( ( k  e.  B  |->  C ) `  ( f `
 n ) )  =  sum_ n  e.  ( 1 ... ( # `  B ) ) ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
711ad2antrr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  A  C_  B )
7271resmptd 5173 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( k  e.  B  |->  C )  |`  A )  =  ( k  e.  A  |->  C ) )
7372fveq1d 5881 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  A  |->  C ) `  m ) )
74 fvres 5893 . . . . . . . . . . 11  |-  ( m  e.  A  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
7574adantl 468 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
7673, 75eqtr3d 2466 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  C ) `  m )  =  ( ( k  e.  B  |->  C ) `  m
) )
7776sumeq2dv 13762 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ m  e.  A  ( ( k  e.  B  |->  C ) `  m ) )
78 fveq2 5879 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  B  |->  C ) `  m
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
79 fzfid 12187 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
1 ... ( # `  B
) )  e.  Fin )
8079, 15fisuppfi 7895 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( `' f " A
)  e.  Fin )
81 f1of1 5828 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) )
-1-1-> B )
8213, 81syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -1-1-> B )
83 f1ores 5843 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  B
) ) -1-1-> B  /\  ( `' f " A
)  C_  ( 1 ... ( # `  B
) ) )  -> 
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) ) )
8482, 18, 83syl2anc 666 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f  |`  ( `' f
" A ) ) : ( `' f
" A ) -1-1-onto-> ( f
" ( `' f
" A ) ) )
85 f1ofo 5836 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) )
-onto-> B )
8613, 85syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -onto-> B )
871adantr 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  A  C_  B )
88 foimacnv 5846 . . . . . . . . . . . 12  |-  ( ( f : ( 1 ... ( # `  B
) ) -onto-> B  /\  A  C_  B )  -> 
( f " ( `' f " A
) )  =  A )
8986, 87, 88syl2anc 666 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f " ( `' f " A ) )  =  A )
90 f1oeq3 5822 . . . . . . . . . . 11  |-  ( ( f " ( `' f " A ) )  =  A  -> 
( ( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
9189, 90syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
9284, 91mpbid 214 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f  |`  ( `' f
" A ) ) : ( `' f
" A ) -1-1-onto-> A )
93 fvres 5893 . . . . . . . . . 10  |-  ( n  e.  ( `' f
" A )  -> 
( ( f  |`  ( `' f " A
) ) `  n
)  =  ( f `
 n ) )
9493adantl 468 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( ( f  |`  ( `' f " A ) ) `  n )  =  ( f `  n ) )
9587sselda 3465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  m  e.  B )
9638ffvelrnda 6035 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  B )  ->  ( ( k  e.  B  |->  C ) `  m )  e.  CC )
9795, 96syldan 473 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( k  e.  B  |->  C ) `  m )  e.  CC )
9878, 80, 92, 94, 97fsumf1o 13782 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( (
k  e.  B  |->  C ) `  m )  =  sum_ n  e.  ( `' f " A
) ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
9977, 98eqtrd 2464 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ n  e.  ( `' f " A
) ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
100 eqidd 2424 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( # `  B
) ) )  -> 
( f `  n
)  =  ( f `
 n ) )
10178, 79, 13, 100, 96fsumf1o 13782 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ m  e.  B  ( (
k  e.  B  |->  C ) `  m )  =  sum_ n  e.  ( 1 ... ( # `  B ) ) ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
10270, 99, 1013eqtr4d 2474 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m ) )
103 sumfc 13768 . . . . . 6  |-  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
104 sumfc 13768 . . . . . 6  |-  sum_ m  e.  B  ( (
k  e.  B  |->  C ) `  m )  =  sum_ k  e.  B  C
105102, 103, 1043eqtr3g 2487 . . . . 5  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
106105expr 619 . . . 4  |-  ( (
ph  /\  ( # `  B
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C ) )
107106exlimdv 1769 . . 3  |-  ( (
ph  /\  ( # `  B
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
) )
108107expimpd 607 . 2  |-  ( ph  ->  ( ( ( # `  B )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
) )
109 fsumss.4 . . 3  |-  ( ph  ->  B  e.  Fin )
110 fz1f1o 13769 . . 3  |-  ( B  e.  Fin  ->  ( B  =  (/)  \/  (
( # `  B )  e.  NN  /\  E. f  f : ( 1 ... ( # `  B ) ) -1-1-onto-> B ) ) )
111109, 110syl 17 . 2  |-  ( ph  ->  ( B  =  (/)  \/  ( ( # `  B
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  B ) ) -1-1-onto-> B ) ) )
11211, 108, 111mpjaod 383 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1438   E.wex 1660    e. wcel 1869    \ cdif 3434    C_ wss 3437   (/)c0 3762   {csn 3997    |-> cmpt 4480   `'ccnv 4850   dom cdm 4851    |` cres 4853   "cima 4854    Fn wfn 5594   -->wf 5595   -1-1->wf1 5596   -onto->wfo 5597   -1-1-onto->wf1o 5598   ` cfv 5599  (class class class)co 6303   Fincfn 7575   CCcc 9539   0cc0 9541   1c1 9542   NNcn 10611   ZZ>=cuz 11161   ...cfz 11786   #chash 12516   sum_csu 13745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-sup 7960  df-oi 8029  df-card 8376  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-n0 10872  df-z 10940  df-uz 11162  df-rp 11305  df-fz 11787  df-fzo 11918  df-seq 12215  df-exp 12274  df-hash 12517  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-clim 13545  df-sum 13746
This theorem is referenced by:  sumss2  13785  rrxmval  22351  rrxmetlem  22353  itg1val2  22634  itg1addlem4  22649  itg1addlem5  22650  ply1termlem  23149  plyaddlem1  23159  plymullem1  23160  coeeulem  23170  coeidlem  23183  coeid3  23186  coefv0  23194  coemulhi  23200  coemulc  23201  dvply1  23229  vieta1lem2  23256  dvtaylp  23317  pserdvlem2  23375  basellem3  24001  musum  24112  muinv  24114  fsumvma  24133  chpub  24140  logexprlim  24145  dchrsum  24189  chebbnd1lem1  24299  rpvmasumlem  24317  dchrisum0fno1  24341  rplogsum  24357  indsum  28846  eulerpartlemgs2  29215  flcidc  35966  elaa2lem  37923  elaa2lemOLD  37924
  Copyright terms: Public domain W3C validator