MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplit Structured version   Unicode version

Theorem fsumsplit 13237
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
fsumsplit.2  |-  ( ph  ->  U  =  ( A  u.  B ) )
fsumsplit.3  |-  ( ph  ->  U  e.  Fin )
fsumsplit.4  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
Assertion
Ref Expression
fsumsplit  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    ph, k    U, k
Allowed substitution hint:    C( k)

Proof of Theorem fsumsplit
StepHypRef Expression
1 ssun1 3540 . . . . 5  |-  A  C_  ( A  u.  B
)
2 fsumsplit.2 . . . . 5  |-  ( ph  ->  U  =  ( A  u.  B ) )
31, 2syl5sseqr 3426 . . . 4  |-  ( ph  ->  A  C_  U )
43sselda 3377 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  U )
5 fsumsplit.4 . . . . . 6  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
64, 5syldan 470 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
76ralrimiva 2820 . . . 4  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
8 fsumsplit.3 . . . . 5  |-  ( ph  ->  U  e.  Fin )
98olcd 393 . . . 4  |-  ( ph  ->  ( U  C_  ( ZZ>=
`  0 )  \/  U  e.  Fin )
)
10 sumss2 13224 . . . 4  |-  ( ( ( A  C_  U  /\  A. k  e.  A  C  e.  CC )  /\  ( U  C_  ( ZZ>=
`  0 )  \/  U  e.  Fin )
)  ->  sum_ k  e.  A  C  =  sum_ k  e.  U  if ( k  e.  A ,  C ,  0 ) )
113, 7, 9, 10syl21anc 1217 . . 3  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  U  if ( k  e.  A ,  C ,  0 ) )
12 ssun2 3541 . . . . 5  |-  B  C_  ( A  u.  B
)
1312, 2syl5sseqr 3426 . . . 4  |-  ( ph  ->  B  C_  U )
1413sselda 3377 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  U )
1514, 5syldan 470 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
1615ralrimiva 2820 . . . 4  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
17 sumss2 13224 . . . 4  |-  ( ( ( B  C_  U  /\  A. k  e.  B  C  e.  CC )  /\  ( U  C_  ( ZZ>=
`  0 )  \/  U  e.  Fin )
)  ->  sum_ k  e.  B  C  =  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) )
1813, 16, 9, 17syl21anc 1217 . . 3  |-  ( ph  -> 
sum_ k  e.  B  C  =  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) )
1911, 18oveq12d 6130 . 2  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  =  ( sum_ k  e.  U  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) ) )
20 0cn 9399 . . . 4  |-  0  e.  CC
21 ifcl 3852 . . . 4  |-  ( ( C  e.  CC  /\  0  e.  CC )  ->  if ( k  e.  A ,  C , 
0 )  e.  CC )
225, 20, 21sylancl 662 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
23 ifcl 3852 . . . 4  |-  ( ( C  e.  CC  /\  0  e.  CC )  ->  if ( k  e.  B ,  C , 
0 )  e.  CC )
245, 20, 23sylancl 662 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
258, 22, 24fsumadd 13236 . 2  |-  ( ph  -> 
sum_ k  e.  U  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( sum_ k  e.  U  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) ) )
262eleq2d 2510 . . . . . 6  |-  ( ph  ->  ( k  e.  U  <->  k  e.  ( A  u.  B ) ) )
27 elun 3518 . . . . . 6  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
2826, 27syl6bb 261 . . . . 5  |-  ( ph  ->  ( k  e.  U  <->  ( k  e.  A  \/  k  e.  B )
) )
2928biimpa 484 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  (
k  e.  A  \/  k  e.  B )
)
30 iftrue 3818 . . . . . . . 8  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
3130adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  C )
32 noel 3662 . . . . . . . . . . 11  |-  -.  k  e.  (/)
33 elin 3560 . . . . . . . . . . . 12  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
34 fsumsplit.1 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
3534eleq2d 2510 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
3633, 35syl5rbbr 260 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  (/)  <->  (
k  e.  A  /\  k  e.  B )
) )
3732, 36mtbii 302 . . . . . . . . . 10  |-  ( ph  ->  -.  ( k  e.  A  /\  k  e.  B ) )
38 imnan 422 . . . . . . . . . 10  |-  ( ( k  e.  A  ->  -.  k  e.  B
)  <->  -.  ( k  e.  A  /\  k  e.  B ) )
3937, 38sylibr 212 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
4039imp 429 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
41 iffalse 3820 . . . . . . . 8  |-  ( -.  k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
4240, 41syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
4331, 42oveq12d 6130 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( C  + 
0 ) )
446addid1d 9590 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( C  +  0 )  =  C )
4543, 44eqtrd 2475 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
4639con2d 115 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  B  ->  -.  k  e.  A
) )
4746imp 429 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  -.  k  e.  A )
48 iffalse 3820 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
4947, 48syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
50 iftrue 3818 . . . . . . . 8  |-  ( k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  C )
5150adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  =  C )
5249, 51oveq12d 6130 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( 0  +  C ) )
5315addid2d 9591 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  (
0  +  C )  =  C )
5452, 53eqtrd 2475 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
5545, 54jaodan 783 . . . 4  |-  ( (
ph  /\  ( k  e.  A  \/  k  e.  B ) )  -> 
( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C , 
0 ) )  =  C )
5629, 55syldan 470 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
5756sumeq2dv 13201 . 2  |-  ( ph  -> 
sum_ k  e.  U  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  sum_ k  e.  U  C )
5819, 25, 573eqtr2rd 2482 1  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2736    u. cun 3347    i^i cin 3348    C_ wss 3349   (/)c0 3658   ifcif 3812   ` cfv 5439  (class class class)co 6112   Fincfn 7331   CCcc 9301   0cc0 9303    + caddc 9306   ZZ>=cuz 10882   sum_csu 13184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-oi 7745  df-card 8130  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-n0 10601  df-z 10668  df-uz 10883  df-rp 11013  df-fz 11459  df-fzo 11570  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-clim 12987  df-sum 13185
This theorem is referenced by:  fsumm1  13241  fsum1p  13243  fsum2dlem  13258  fsumless  13280  fsumabs  13285  fsumrlim  13295  fsumo1  13296  o1fsum  13297  cvgcmpce  13302  fsumiun  13305  incexclem  13320  incexc  13321  isumltss  13332  climcndslem1  13333  climcndslem2  13334  mertenslem1  13365  bitsinv1  13659  bitsinvp1  13666  sylow2a  16139  fsumcn  20468  ovolfiniun  21006  volfiniun  21050  uniioombllem3  21087  itgfsum  21326  dvmptfsum  21469  vieta1lem2  21799  mtest  21891  birthdaylem2  22368  fsumharmonic  22427  ftalem5  22436  chtprm  22513  chtdif  22518  perfectlem2  22591  lgsquadlem2  22716  dchrisumlem1  22760  dchrisumlem2  22761  rpvmasum2  22783  dchrisum0lem1b  22786  dchrisum0lem3  22790  pntrsumbnd2  22838  pntrlog2bndlem6  22854  pntpbnd2  22858  pntlemf  22876  axlowdimlem16  23225  axlowdimlem17  23226  sumpr  26264  signsplypnf  26973  jm2.22  29370  jm2.23  29371  sumpair  29783  stoweidlem11  29832  stoweidlem26  29847  stoweidlem44  29865  fsumsplitsndif  30264  fsumsplitsnun  30268
  Copyright terms: Public domain W3C validator