MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsers Structured version   Unicode version

Theorem fsumsers 13513
Description: Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
fsumsers.1  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
fsumsers.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumsers.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumsers.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fsumsers  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M
Allowed substitution hint:    B( k)

Proof of Theorem fsumsers
StepHypRef Expression
1 eqid 2467 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 fsumsers.2 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 eluzel2 11087 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
42, 3syl 16 . . 3  |-  ( ph  ->  M  e.  ZZ )
5 fsumsers.4 . . . 4  |-  ( ph  ->  A  C_  ( M ... N ) )
6 fzssuz 11724 . . . 4  |-  ( M ... N )  C_  ( ZZ>= `  M )
75, 6syl6ss 3516 . . 3  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
8 fsumsers.1 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
9 fsumsers.3 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
101, 4, 7, 8, 9zsum 13503 . 2  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
11 fclim 13339 . . . 4  |-  ~~>  : dom  ~~>  --> CC
12 ffun 5733 . . . 4  |-  (  ~~>  : dom  ~~>  --> CC 
->  Fun  ~~>  )
1311, 12ax-mp 5 . . 3  |-  Fun  ~~>
148, 2, 9, 5fsumcvg2 13512 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
15 funbrfv 5906 . . 3  |-  ( Fun  ~~>  ->  (  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `
 N )  -> 
(  ~~>  `  seq M (  +  ,  F ) )  =  (  seq M (  +  ,  F ) `  N
) ) )
1613, 14, 15mpsyl 63 . 2  |-  ( ph  ->  (  ~~>  `  seq M (  +  ,  F ) )  =  (  seq M (  +  ,  F ) `  N
) )
1710, 16eqtrd 2508 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    C_ wss 3476   ifcif 3939   class class class wbr 4447   dom cdm 4999   Fun wfun 5582   -->wf 5584   ` cfv 5588  (class class class)co 6284   CCcc 9490   0cc0 9492    + caddc 9495   ZZcz 10864   ZZ>=cuz 11082   ...cfz 11672    seqcseq 12075    ~~> cli 13270   sum_csu 13471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-fz 11673  df-fzo 11793  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-sum 13472
This theorem is referenced by:  fsumser  13515
  Copyright terms: Public domain W3C validator