MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrlim Structured version   Visualization version   Unicode version

Theorem fsumrlim 13948
Description: Limit of a finite sum of converging sequences. Note that  C ( k ) is a collection of functions with implicit parameter  k, each of which converges to  D ( k ) as  n  ~~> +oo. (Contributed by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
fsumrlim.1  |-  ( ph  ->  A  C_  RR )
fsumrlim.2  |-  ( ph  ->  B  e.  Fin )
fsumrlim.3  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  V )
fsumrlim.4  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  ~~> r  D )
Assertion
Ref Expression
fsumrlim  |-  ( ph  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  ~~> r  sum_ k  e.  B  D
)
Distinct variable groups:    x, k, A    B, k, x    ph, k, x
Allowed substitution hints:    C( x, k)    D( x, k)    V( x, k)

Proof of Theorem fsumrlim
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3437 . 2  |-  B  C_  B
2 fsumrlim.2 . . 3  |-  ( ph  ->  B  e.  Fin )
3 sseq1 3439 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  B  <->  (/)  C_  B
) )
4 sumeq1 13832 . . . . . . . . 9  |-  ( w  =  (/)  ->  sum_ k  e.  w  C  =  sum_ k  e.  (/)  C )
5 sum0 13864 . . . . . . . . 9  |-  sum_ k  e.  (/)  C  =  0
64, 5syl6eq 2521 . . . . . . . 8  |-  ( w  =  (/)  ->  sum_ k  e.  w  C  = 
0 )
76mpteq2dv 4483 . . . . . . 7  |-  ( w  =  (/)  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  0 ) )
8 sumeq1 13832 . . . . . . . 8  |-  ( w  =  (/)  ->  sum_ k  e.  w  D  =  sum_ k  e.  (/)  D )
9 sum0 13864 . . . . . . . 8  |-  sum_ k  e.  (/)  D  =  0
108, 9syl6eq 2521 . . . . . . 7  |-  ( w  =  (/)  ->  sum_ k  e.  w  D  = 
0 )
117, 10breq12d 4408 . . . . . 6  |-  ( w  =  (/)  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D  <->  ( x  e.  A  |->  0 )  ~~> r  0 ) )
123, 11imbi12d 327 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D )  <->  (
(/)  C_  B  ->  (
x  e.  A  |->  0 )  ~~> r  0 ) ) )
1312imbi2d 323 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D
) )  <->  ( ph  ->  ( (/)  C_  B  -> 
( x  e.  A  |->  0 )  ~~> r  0 ) ) ) )
14 sseq1 3439 . . . . . 6  |-  ( w  =  y  ->  (
w  C_  B  <->  y  C_  B ) )
15 sumeq1 13832 . . . . . . . 8  |-  ( w  =  y  ->  sum_ k  e.  w  C  =  sum_ k  e.  y  C )
1615mpteq2dv 4483 . . . . . . 7  |-  ( w  =  y  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ k  e.  y  C )
)
17 sumeq1 13832 . . . . . . 7  |-  ( w  =  y  ->  sum_ k  e.  w  D  =  sum_ k  e.  y  D )
1816, 17breq12d 4408 . . . . . 6  |-  ( w  =  y  ->  (
( x  e.  A  |-> 
sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D  <->  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D )
)
1914, 18imbi12d 327 . . . . 5  |-  ( w  =  y  ->  (
( w  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D
)  <->  ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
) ) )
2019imbi2d 323 . . . 4  |-  ( w  =  y  ->  (
( ph  ->  ( w 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D )
)  <->  ( ph  ->  ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D )
) ) )
21 sseq1 3439 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  B 
<->  ( y  u.  {
z } )  C_  B ) )
22 sumeq1 13832 . . . . . . . 8  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  C  =  sum_ k  e.  ( y  u.  {
z } ) C )
2322mpteq2dv 4483 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C ) )
24 sumeq1 13832 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  D  =  sum_ k  e.  ( y  u.  {
z } ) D )
2523, 24breq12d 4408 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D 
<->  ( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  ~~> r  sum_ k  e.  ( y  u.  { z } ) D ) )
2621, 25imbi12d 327 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D )  <->  ( ( y  u.  {
z } )  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  ~~> r  sum_ k  e.  ( y  u.  { z } ) D ) ) )
2726imbi2d 323 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ph  ->  ( w  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D
) )  <->  ( ph  ->  ( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  ~~> r  sum_ k  e.  ( y  u.  { z } ) D ) ) ) )
28 sseq1 3439 . . . . . 6  |-  ( w  =  B  ->  (
w  C_  B  <->  B  C_  B
) )
29 sumeq1 13832 . . . . . . . 8  |-  ( w  =  B  ->  sum_ k  e.  w  C  =  sum_ k  e.  B  C
)
3029mpteq2dv 4483 . . . . . . 7  |-  ( w  =  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ k  e.  B  C )
)
31 sumeq1 13832 . . . . . . 7  |-  ( w  =  B  ->  sum_ k  e.  w  D  =  sum_ k  e.  B  D
)
3230, 31breq12d 4408 . . . . . 6  |-  ( w  =  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D  <->  ( x  e.  A  |->  sum_ k  e.  B  C
)  ~~> r  sum_ k  e.  B  D )
)
3328, 32imbi12d 327 . . . . 5  |-  ( w  =  B  ->  (
( w  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D
)  <->  ( B  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  B  C )  ~~> r  sum_ k  e.  B  D
) ) )
3433imbi2d 323 . . . 4  |-  ( w  =  B  ->  (
( ph  ->  ( w 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  ~~> r  sum_ k  e.  w  D )
)  <->  ( ph  ->  ( B  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  B  C
)  ~~> r  sum_ k  e.  B  D )
) ) )
35 fsumrlim.1 . . . . . 6  |-  ( ph  ->  A  C_  RR )
36 0cn 9653 . . . . . 6  |-  0  e.  CC
37 rlimconst 13685 . . . . . 6  |-  ( ( A  C_  RR  /\  0  e.  CC )  ->  (
x  e.  A  |->  0 )  ~~> r  0 )
3835, 36, 37sylancl 675 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  0 )  ~~> r  0 )
3938a1d 25 . . . 4  |-  ( ph  ->  ( (/)  C_  B  -> 
( x  e.  A  |->  0 )  ~~> r  0 ) )
40 ssun1 3588 . . . . . . . . . 10  |-  y  C_  ( y  u.  {
z } )
41 sstr 3426 . . . . . . . . . 10  |-  ( ( y  C_  ( y  u.  { z } )  /\  ( y  u. 
{ z } ) 
C_  B )  -> 
y  C_  B )
4240, 41mpan 684 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  B  ->  y  C_  B )
4342imim1i 59 . . . . . . . 8  |-  ( ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D )  ->  ( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D )
)
44 sumex 13831 . . . . . . . . . . . . . 14  |-  sum_ k  e.  y  [_ w  /  x ]_ C  e.  _V
4544a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  /\  w  e.  A )  ->  sum_ k  e.  y  [_ w  /  x ]_ C  e.  _V )
46 simprr 774 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( y  u.  {
z } )  C_  B )
4746unssbd 3603 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  { z }  C_  B )
48 vex 3034 . . . . . . . . . . . . . . . . . . . . 21  |-  z  e. 
_V
4948snss 4087 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  <->  { z }  C_  B )
5047, 49sylibr 217 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
z  e.  B )
5150adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  z  e.  B )
52 fsumrlim.3 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  V )
5352anass1rs 824 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  B )  /\  x  e.  A )  ->  C  e.  V )
54 fsumrlim.4 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  ~~> r  D )
5553, 54rlimmptrcl 13748 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  B )  /\  x  e.  A )  ->  C  e.  CC )
5655an32s 821 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
5756adantllr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  k  e.  B )  ->  C  e.  CC )
5857ralrimiva 2809 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  A. k  e.  B  C  e.  CC )
59 nfcsb1v 3365 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ k [_ z  /  k ]_ C
6059nfel1 2626 . . . . . . . . . . . . . . . . . . 19  |-  F/ k
[_ z  /  k ]_ C  e.  CC
61 csbeq1a 3358 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  z  ->  C  =  [_ z  /  k ]_ C )
6261eleq1d 2533 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  z  ->  ( C  e.  CC  <->  [_ z  / 
k ]_ C  e.  CC ) )
6360, 62rspc 3130 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  B  ->  ( A. k  e.  B  C  e.  CC  ->  [_ z  /  k ]_ C  e.  CC )
)
6451, 58, 63sylc 61 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  [_ z  /  k ]_ C  e.  CC )
6564ralrimiva 2809 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  A. x  e.  A  [_ z  /  k ]_ C  e.  CC )
6665adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  A. x  e.  A  [_ z  / 
k ]_ C  e.  CC )
67 nfcsb1v 3365 . . . . . . . . . . . . . . . . 17  |-  F/_ x [_ w  /  x ]_ [_ z  /  k ]_ C
6867nfel1 2626 . . . . . . . . . . . . . . . 16  |-  F/ x [_ w  /  x ]_ [_ z  /  k ]_ C  e.  CC
69 csbeq1a 3358 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  [_ z  /  k ]_ C  =  [_ w  /  x ]_ [_ z  /  k ]_ C )
7069eleq1d 2533 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  ( [_ z  /  k ]_ C  e.  CC  <->  [_ w  /  x ]_ [_ z  /  k ]_ C  e.  CC )
)
7168, 70rspc 3130 . . . . . . . . . . . . . . 15  |-  ( w  e.  A  ->  ( A. x  e.  A  [_ z  /  k ]_ C  e.  CC  ->  [_ w  /  x ]_ [_ z  /  k ]_ C  e.  CC )
)
7266, 71mpan9 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  /\  w  e.  A )  ->  [_ w  /  x ]_ [_ z  /  k ]_ C  e.  CC )
73 elex 3040 . . . . . . . . . . . . . 14  |-  ( [_ w  /  x ]_ [_ z  /  k ]_ C  e.  CC  ->  [_ w  /  x ]_ [_ z  / 
k ]_ C  e.  _V )
7472, 73syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  /\  w  e.  A )  ->  [_ w  /  x ]_ [_ z  /  k ]_ C  e.  _V )
75 nfcv 2612 . . . . . . . . . . . . . . 15  |-  F/_ w sum_ k  e.  y  C
76 nfcv 2612 . . . . . . . . . . . . . . . 16  |-  F/_ x
y
77 nfcsb1v 3365 . . . . . . . . . . . . . . . 16  |-  F/_ x [_ w  /  x ]_ C
7876, 77nfsum 13834 . . . . . . . . . . . . . . 15  |-  F/_ x sum_ k  e.  y  [_ w  /  x ]_ C
79 csbeq1a 3358 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  C  =  [_ w  /  x ]_ C )
8079sumeq2sdv 13847 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  sum_ k  e.  y  C  =  sum_ k  e.  y  [_ w  /  x ]_ C
)
8175, 78, 80cbvmpt 4487 . . . . . . . . . . . . . 14  |-  ( x  e.  A  |->  sum_ k  e.  y  C )  =  ( w  e.  A  |->  sum_ k  e.  y 
[_ w  /  x ]_ C )
82 simpr 468 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D )
8381, 82syl5eqbrr 4430 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  ( w  e.  A  |->  sum_ k  e.  y  [_ w  /  x ]_ C )  ~~> r  sum_ k  e.  y  D
)
84 nfcv 2612 . . . . . . . . . . . . . . 15  |-  F/_ w [_ z  /  k ]_ C
8584, 67, 69cbvmpt 4487 . . . . . . . . . . . . . 14  |-  ( x  e.  A  |->  [_ z  /  k ]_ C
)  =  ( w  e.  A  |->  [_ w  /  x ]_ [_ z  /  k ]_ C
)
8654ralrimiva 2809 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  B  ( x  e.  A  |->  C )  ~~> r  D
)
8786adantr 472 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  A. k  e.  B  ( x  e.  A  |->  C )  ~~> r  D
)
88 nfcv 2612 . . . . . . . . . . . . . . . . . . 19  |-  F/_ k A
8988, 59nfmpt 4484 . . . . . . . . . . . . . . . . . 18  |-  F/_ k
( x  e.  A  |-> 
[_ z  /  k ]_ C )
90 nfcv 2612 . . . . . . . . . . . . . . . . . 18  |-  F/_ k  ~~> r
91 nfcsb1v 3365 . . . . . . . . . . . . . . . . . 18  |-  F/_ k [_ z  /  k ]_ D
9289, 90, 91nfbr 4440 . . . . . . . . . . . . . . . . 17  |-  F/ k ( x  e.  A  |-> 
[_ z  /  k ]_ C )  ~~> r  [_ z  /  k ]_ D
9361mpteq2dv 4483 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  z  ->  (
x  e.  A  |->  C )  =  ( x  e.  A  |->  [_ z  /  k ]_ C
) )
94 csbeq1a 3358 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  z  ->  D  =  [_ z  /  k ]_ D )
9593, 94breq12d 4408 . . . . . . . . . . . . . . . . 17  |-  ( k  =  z  ->  (
( x  e.  A  |->  C )  ~~> r  D  <->  ( x  e.  A  |->  [_ z  /  k ]_ C
)  ~~> r  [_ z  /  k ]_ D
) )
9692, 95rspc 3130 . . . . . . . . . . . . . . . 16  |-  ( z  e.  B  ->  ( A. k  e.  B  ( x  e.  A  |->  C )  ~~> r  D  ->  ( x  e.  A  |-> 
[_ z  /  k ]_ C )  ~~> r  [_ z  /  k ]_ D
) )
9750, 87, 96sylc 61 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
[_ z  /  k ]_ C )  ~~> r  [_ z  /  k ]_ D
)
9897adantr 472 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  ( x  e.  A  |->  [_ z  /  k ]_ C
)  ~~> r  [_ z  /  k ]_ D
)
9985, 98syl5eqbrr 4430 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  ( w  e.  A  |->  [_ w  /  x ]_ [_ z  /  k ]_ C
)  ~~> r  [_ z  /  k ]_ D
)
10045, 74, 83, 99rlimadd 13783 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  ( w  e.  A  |->  ( sum_ k  e.  y  [_ w  /  x ]_ C  +  [_ w  /  x ]_ [_ z  /  k ]_ C ) )  ~~> r  (
sum_ k  e.  y  D  +  [_ z  /  k ]_ D
) )
101 simprl 772 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  -.  z  e.  y
)
102 disjsn 4023 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
103101, 102sylibr 217 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( y  i^i  {
z } )  =  (/) )
104103adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( y  i^i  {
z } )  =  (/) )
105 eqidd 2472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( y  u.  {
z } )  =  ( y  u.  {
z } ) )
1062adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  B  e.  Fin )
107 ssfi 7810 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  Fin  /\  ( y  u.  {
z } )  C_  B )  ->  (
y  u.  { z } )  e.  Fin )
108106, 46, 107syl2anc 673 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( y  u.  {
z } )  e. 
Fin )
109108adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( y  u.  {
z } )  e. 
Fin )
11046sselda 3418 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  k  e.  ( y  u.  { z } ) )  ->  k  e.  B )
111110adantlr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  k  e.  ( y  u.  {
z } ) )  ->  k  e.  B
)
112111, 57syldan 478 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  k  e.  ( y  u.  {
z } ) )  ->  C  e.  CC )
113104, 105, 109, 112fsumsplit 13883 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  ( y  u.  { z } ) C  =  ( sum_ k  e.  y  C  +  sum_ k  e.  { z } C
) )
114 nfcv 2612 . . . . . . . . . . . . . . . . . . 19  |-  F/_ w C
115 nfcsb1v 3365 . . . . . . . . . . . . . . . . . . 19  |-  F/_ k [_ w  /  k ]_ C
116 csbeq1a 3358 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  w  ->  C  =  [_ w  /  k ]_ C )
117114, 115, 116cbvsumi 13840 . . . . . . . . . . . . . . . . . 18  |-  sum_ k  e.  { z } C  =  sum_ w  e.  {
z } [_ w  /  k ]_ C
118 csbeq1 3352 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  z  ->  [_ w  /  k ]_ C  =  [_ z  /  k ]_ C )
119118sumsn 13884 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  B  /\  [_ z  /  k ]_ C  e.  CC )  -> 
sum_ w  e.  { z } [_ w  / 
k ]_ C  =  [_ z  /  k ]_ C
)
12051, 64, 119syl2anc 673 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ w  e.  { z } [_ w  / 
k ]_ C  =  [_ z  /  k ]_ C
)
121117, 120syl5eq 2517 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  {
z } C  = 
[_ z  /  k ]_ C )
122121oveq2d 6324 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( sum_ k  e.  y  C  +  sum_ k  e.  { z } C
)  =  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C ) )
123113, 122eqtrd 2505 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  ( y  u.  { z } ) C  =  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C
) )
124123mpteq2dva 4482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  =  ( x  e.  A  |->  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C ) ) )
125124adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  {
z } ) C )  =  ( x  e.  A  |->  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C ) ) )
126 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ w
( sum_ k  e.  y  C  +  [_ z  /  k ]_ C
)
127 nfcv 2612 . . . . . . . . . . . . . . 15  |-  F/_ x  +
12878, 127, 67nfov 6334 . . . . . . . . . . . . . 14  |-  F/_ x
( sum_ k  e.  y 
[_ w  /  x ]_ C  +  [_ w  /  x ]_ [_ z  /  k ]_ C
)
12980, 69oveq12d 6326 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  ( sum_ k  e.  y  C  +  [_ z  / 
k ]_ C )  =  ( sum_ k  e.  y 
[_ w  /  x ]_ C  +  [_ w  /  x ]_ [_ z  /  k ]_ C
) )
130126, 128, 129cbvmpt 4487 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C ) )  =  ( w  e.  A  |->  ( sum_ k  e.  y 
[_ w  /  x ]_ C  +  [_ w  /  x ]_ [_ z  /  k ]_ C
) )
131125, 130syl6eq 2521 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  {
z } ) C )  =  ( w  e.  A  |->  ( sum_ k  e.  y  [_ w  /  x ]_ C  +  [_ w  /  x ]_ [_ z  /  k ]_ C ) ) )
132 eqidd 2472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( y  u.  {
z } )  =  ( y  u.  {
z } ) )
133 rlimcl 13644 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  A  |->  C )  ~~> r  D  ->  D  e.  CC )
13454, 133syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  B )  ->  D  e.  CC )
135134adantlr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  k  e.  B )  ->  D  e.  CC )
136110, 135syldan 478 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  k  e.  ( y  u.  { z } ) )  ->  D  e.  CC )
137103, 132, 108, 136fsumsplit 13883 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  sum_ k  e.  ( y  u.  { z } ) D  =  (
sum_ k  e.  y  D  +  sum_ k  e.  { z } D
) )
138 nfcv 2612 . . . . . . . . . . . . . . . . 17  |-  F/_ w D
139 nfcsb1v 3365 . . . . . . . . . . . . . . . . 17  |-  F/_ k [_ w  /  k ]_ D
140 csbeq1a 3358 . . . . . . . . . . . . . . . . 17  |-  ( k  =  w  ->  D  =  [_ w  /  k ]_ D )
141138, 139, 140cbvsumi 13840 . . . . . . . . . . . . . . . 16  |-  sum_ k  e.  { z } D  =  sum_ w  e.  {
z } [_ w  /  k ]_ D
142135ralrimiva 2809 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  A. k  e.  B  D  e.  CC )
14391nfel1 2626 . . . . . . . . . . . . . . . . . . 19  |-  F/ k
[_ z  /  k ]_ D  e.  CC
14494eleq1d 2533 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  z  ->  ( D  e.  CC  <->  [_ z  / 
k ]_ D  e.  CC ) )
145143, 144rspc 3130 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  B  ->  ( A. k  e.  B  D  e.  CC  ->  [_ z  /  k ]_ D  e.  CC )
)
14650, 142, 145sylc 61 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  [_ z  /  k ]_ D  e.  CC )
147 csbeq1 3352 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  z  ->  [_ w  /  k ]_ D  =  [_ z  /  k ]_ D )
148147sumsn 13884 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  B  /\  [_ z  /  k ]_ D  e.  CC )  -> 
sum_ w  e.  { z } [_ w  / 
k ]_ D  =  [_ z  /  k ]_ D
)
14950, 146, 148syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  sum_ w  e.  { z } [_ w  / 
k ]_ D  =  [_ z  /  k ]_ D
)
150141, 149syl5eq 2517 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  sum_ k  e.  { z } D  =  [_ z  /  k ]_ D
)
151150oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( sum_ k  e.  y  D  +  sum_ k  e.  { z } D
)  =  ( sum_ k  e.  y  D  +  [_ z  /  k ]_ D ) )
152137, 151eqtrd 2505 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  sum_ k  e.  ( y  u.  { z } ) D  =  (
sum_ k  e.  y  D  +  [_ z  /  k ]_ D
) )
153152adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  sum_ k  e.  ( y  u.  {
z } ) D  =  ( sum_ k  e.  y  D  +  [_ z  /  k ]_ D ) )
154100, 131, 1533brtr4d 4426 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  {
z } ) C )  ~~> r  sum_ k  e.  ( y  u.  {
z } ) D )
155154ex 441 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D  ->  ( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  ~~> r  sum_ k  e.  ( y  u.  { z } ) D ) )
156155expr 626 . . . . . . . . 9  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( y  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  {
z } ) C )  ~~> r  sum_ k  e.  ( y  u.  {
z } ) D ) ) )
157156a2d 28 . . . . . . . 8  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D )  ->  ( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  ~~> r  sum_ k  e.  ( y  u.  { z } ) D ) ) )
15843, 157syl5 32 . . . . . . 7  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( y  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
)  ->  ( (
y  u.  { z } )  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  ~~> r  sum_ k  e.  ( y  u.  { z } ) D ) ) )
159158expcom 442 . . . . . 6  |-  ( -.  z  e.  y  -> 
( ph  ->  ( ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D )  ->  ( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  ~~> r  sum_ k  e.  ( y  u.  { z } ) D ) ) ) )
160159a2d 28 . . . . 5  |-  ( -.  z  e.  y  -> 
( ( ph  ->  ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D )
)  ->  ( ph  ->  ( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  ~~> r  sum_ k  e.  ( y  u.  { z } ) D ) ) ) )
161160adantl 473 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( ph  ->  ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  ~~> r  sum_ k  e.  y  D
) )  ->  ( ph  ->  ( ( y  u.  { z } )  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  ~~> r  sum_ k  e.  ( y  u.  { z } ) D ) ) ) )
16213, 20, 27, 34, 39, 161findcard2s 7830 . . 3  |-  ( B  e.  Fin  ->  ( ph  ->  ( B  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  B  C )  ~~> r  sum_ k  e.  B  D
) ) )
1632, 162mpcom 36 . 2  |-  ( ph  ->  ( B  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  ~~> r  sum_ k  e.  B  D
) )
1641, 163mpi 20 1  |-  ( ph  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  ~~> r  sum_ k  e.  B  D
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031   [_csb 3349    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   {csn 3959   class class class wbr 4395    |-> cmpt 4454  (class class class)co 6308   Fincfn 7587   CCcc 9555   RRcr 9556   0cc0 9557    + caddc 9560    ~~> r crli 13626   sum_csu 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-rlim 13630  df-sum 13830
This theorem is referenced by:  climfsum  13957  logexprlim  24232  signsplypnf  29511
  Copyright terms: Public domain W3C validator