MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrelem Structured version   Unicode version

Theorem fsumrelem 13282
Description: Lemma for fsumre 13283, fsumim 13284, and fsumcj 13285. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1  |-  ( ph  ->  A  e.  Fin )
fsumre.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumrelem.3  |-  F : CC
--> CC
fsumrelem.4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
Assertion
Ref Expression
fsumrelem  |-  ( ph  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) )
Distinct variable groups:    x, k,
y, A    x, B, y    k, F, x, y    ph, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fsumrelem
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 9390 . . . . . . . 8  |-  0  e.  CC
2 fsumrelem.3 . . . . . . . . 9  |-  F : CC
--> CC
32ffvelrni 5854 . . . . . . . 8  |-  ( 0  e.  CC  ->  ( F `  0 )  e.  CC )
41, 3ax-mp 5 . . . . . . 7  |-  ( F `
 0 )  e.  CC
54addid1i 9568 . . . . . 6  |-  ( ( F `  0 )  +  0 )  =  ( F `  0
)
6 oveq1 6110 . . . . . . . . . 10  |-  ( x  =  0  ->  (
x  +  y )  =  ( 0  +  y ) )
76fveq2d 5707 . . . . . . . . 9  |-  ( x  =  0  ->  ( F `  ( x  +  y ) )  =  ( F `  ( 0  +  y ) ) )
8 fveq2 5703 . . . . . . . . . 10  |-  ( x  =  0  ->  ( F `  x )  =  ( F ` 
0 ) )
98oveq1d 6118 . . . . . . . . 9  |-  ( x  =  0  ->  (
( F `  x
)  +  ( F `
 y ) )  =  ( ( F `
 0 )  +  ( F `  y
) ) )
107, 9eqeq12d 2457 . . . . . . . 8  |-  ( x  =  0  ->  (
( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) )  <->  ( F `  ( 0  +  y ) )  =  ( ( F `  0
)  +  ( F `
 y ) ) ) )
11 oveq2 6111 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
0  +  y )  =  ( 0  +  0 ) )
12 00id 9556 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
1311, 12syl6eq 2491 . . . . . . . . . 10  |-  ( y  =  0  ->  (
0  +  y )  =  0 )
1413fveq2d 5707 . . . . . . . . 9  |-  ( y  =  0  ->  ( F `  ( 0  +  y ) )  =  ( F ` 
0 ) )
15 fveq2 5703 . . . . . . . . . 10  |-  ( y  =  0  ->  ( F `  y )  =  ( F ` 
0 ) )
1615oveq2d 6119 . . . . . . . . 9  |-  ( y  =  0  ->  (
( F `  0
)  +  ( F `
 y ) )  =  ( ( F `
 0 )  +  ( F `  0
) ) )
1714, 16eqeq12d 2457 . . . . . . . 8  |-  ( y  =  0  ->  (
( F `  (
0  +  y ) )  =  ( ( F `  0 )  +  ( F `  y ) )  <->  ( F `  0 )  =  ( ( F ` 
0 )  +  ( F `  0 ) ) ) )
18 fsumrelem.4 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
1910, 17, 18vtocl2ga 3050 . . . . . . 7  |-  ( ( 0  e.  CC  /\  0  e.  CC )  ->  ( F `  0
)  =  ( ( F `  0 )  +  ( F ` 
0 ) ) )
201, 1, 19mp2an 672 . . . . . 6  |-  ( F `
 0 )  =  ( ( F ` 
0 )  +  ( F `  0 ) )
215, 20eqtr2i 2464 . . . . 5  |-  ( ( F `  0 )  +  ( F ` 
0 ) )  =  ( ( F ` 
0 )  +  0 )
224, 4, 1addcani 9574 . . . . 5  |-  ( ( ( F `  0
)  +  ( F `
 0 ) )  =  ( ( F `
 0 )  +  0 )  <->  ( F `  0 )  =  0 )
2321, 22mpbi 208 . . . 4  |-  ( F `
 0 )  =  0
24 sumeq1 13178 . . . . . 6  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
25 sum0 13210 . . . . . 6  |-  sum_ k  e.  (/)  B  =  0
2624, 25syl6eq 2491 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  = 
0 )
2726fveq2d 5707 . . . 4  |-  ( A  =  (/)  ->  ( F `
 sum_ k  e.  A  B )  =  ( F `  0 ) )
28 sumeq1 13178 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( F `  B )  =  sum_ k  e.  (/)  ( F `
 B ) )
29 sum0 13210 . . . . 5  |-  sum_ k  e.  (/)  ( F `  B )  =  0
3028, 29syl6eq 2491 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( F `  B )  =  0 )
3123, 27, 303eqtr4a 2501 . . 3  |-  ( A  =  (/)  ->  ( F `
 sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `  B )
)
3231a1i 11 . 2  |-  ( ph  ->  ( A  =  (/)  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) ) )
33 addcl 9376 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3433adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  +  y )  e.  CC )
35 fsumre.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
36 eqid 2443 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
3735, 36fmptd 5879 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
3837adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
39 simprr 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
40 f1of 5653 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
4139, 40syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
42 fco 5580 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
4338, 41, 42syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
4443ffvelrnda 5855 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  x )  e.  CC )
45 simprl 755 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
46 nnuz 10908 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
4745, 46syl6eleq 2533 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
4818adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( F `  ( x  +  y ) )  =  ( ( F `  x
)  +  ( F `
 y ) ) )
4941ffvelrnda 5855 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( f `  x
)  e.  A )
50 simpr 461 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
5136fvmpt2 5793 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  k )  =  B )
5250, 35, 51syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  B ) `  k
)  =  B )
5352fveq2d 5707 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  ( (
k  e.  A  |->  B ) `  k ) )  =  ( F `
 B ) )
54 fvex 5713 . . . . . . . . . . . . . 14  |-  ( F `
 B )  e. 
_V
55 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( k  e.  A  |->  ( F `
 B ) )  =  ( k  e.  A  |->  ( F `  B ) )
5655fvmpt2 5793 . . . . . . . . . . . . . 14  |-  ( ( k  e.  A  /\  ( F `  B )  e.  _V )  -> 
( ( k  e.  A  |->  ( F `  B ) ) `  k )  =  ( F `  B ) )
5750, 54, 56sylancl 662 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( F `  B
) ) `  k
)  =  ( F `
 B ) )
5853, 57eqtr4d 2478 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  ( (
k  e.  A  |->  B ) `  k ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  k ) )
5958ralrimiva 2811 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  ( F `  ( ( k  e.  A  |->  B ) `  k ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  k ) )
6059ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  ->  A. k  e.  A  ( F `  ( ( k  e.  A  |->  B ) `  k ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  k ) )
61 nfcv 2589 . . . . . . . . . . . . 13  |-  F/_ k F
62 nffvmpt1 5711 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  B ) `  ( f `  x
) )
6361, 62nffv 5710 . . . . . . . . . . . 12  |-  F/_ k
( F `  (
( k  e.  A  |->  B ) `  (
f `  x )
) )
64 nffvmpt1 5711 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e.  A  |->  ( F `  B ) ) `  ( f `  x
) )
6563, 64nfeq 2599 . . . . . . . . . . 11  |-  F/ k ( F `  (
( k  e.  A  |->  B ) `  (
f `  x )
) )  =  ( ( k  e.  A  |->  ( F `  B
) ) `  (
f `  x )
)
66 fveq2 5703 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  x )  ->  (
( k  e.  A  |->  B ) `  k
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 x ) ) )
6766fveq2d 5707 . . . . . . . . . . . 12  |-  ( k  =  ( f `  x )  ->  ( F `  ( (
k  e.  A  |->  B ) `  k ) )  =  ( F `
 ( ( k  e.  A  |->  B ) `
 ( f `  x ) ) ) )
68 fveq2 5703 . . . . . . . . . . . 12  |-  ( k  =  ( f `  x )  ->  (
( k  e.  A  |->  ( F `  B
) ) `  k
)  =  ( ( k  e.  A  |->  ( F `  B ) ) `  ( f `
 x ) ) )
6967, 68eqeq12d 2457 . . . . . . . . . . 11  |-  ( k  =  ( f `  x )  ->  (
( F `  (
( k  e.  A  |->  B ) `  k
) )  =  ( ( k  e.  A  |->  ( F `  B
) ) `  k
)  <->  ( F `  ( ( k  e.  A  |->  B ) `  ( f `  x
) ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  ( f `  x
) ) ) )
7065, 69rspc 3079 . . . . . . . . . 10  |-  ( ( f `  x )  e.  A  ->  ( A. k  e.  A  ( F `  ( ( k  e.  A  |->  B ) `  k ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  k )  ->  ( F `  ( ( k  e.  A  |->  B ) `  ( f `  x
) ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  ( f `  x
) ) ) )
7149, 60, 70sylc 60 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( F `  (
( k  e.  A  |->  B ) `  (
f `  x )
) )  =  ( ( k  e.  A  |->  ( F `  B
) ) `  (
f `  x )
) )
72 fvco3 5780 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  x )  =  ( ( k  e.  A  |->  B ) `  (
f `  x )
) )
7341, 72sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  x )  =  ( ( k  e.  A  |->  B ) `  (
f `  x )
) )
7473fveq2d 5707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( F `  (
( ( k  e.  A  |->  B )  o.  f ) `  x
) )  =  ( F `  ( ( k  e.  A  |->  B ) `  ( f `
 x ) ) ) )
75 fvco3 5780 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( F `
 B ) )  o.  f ) `  x )  =  ( ( k  e.  A  |->  ( F `  B
) ) `  (
f `  x )
) )
7641, 75sylan 471 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( F `
 B ) )  o.  f ) `  x )  =  ( ( k  e.  A  |->  ( F `  B
) ) `  (
f `  x )
) )
7771, 74, 763eqtr4d 2485 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( F `  (
( ( k  e.  A  |->  B )  o.  f ) `  x
) )  =  ( ( ( k  e.  A  |->  ( F `  B ) )  o.  f ) `  x
) )
7834, 44, 47, 48, 77seqhomo 11865 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( F `  (  seq 1 (  +  , 
( ( k  e.  A  |->  B )  o.  f ) ) `  ( # `  A ) ) )  =  (  seq 1 (  +  ,  ( ( k  e.  A  |->  ( F `
 B ) )  o.  f ) ) `
 ( # `  A
) ) )
79 fveq2 5703 . . . . . . . . 9  |-  ( m  =  ( f `  x )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 x ) ) )
8038ffvelrnda 5855 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
8179, 45, 39, 80, 73fsum 13209 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
8281fveq2d 5707 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( F `  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m ) )  =  ( F `  (  seq 1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) ) ) )
83 fveq2 5703 . . . . . . . 8  |-  ( m  =  ( f `  x )  ->  (
( k  e.  A  |->  ( F `  B
) ) `  m
)  =  ( ( k  e.  A  |->  ( F `  B ) ) `  ( f `
 x ) ) )
842ffvelrni 5854 . . . . . . . . . . . 12  |-  ( B  e.  CC  ->  ( F `  B )  e.  CC )
8535, 84syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  B )  e.  CC )
8685, 55fmptd 5879 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  ( F `  B
) ) : A --> CC )
8786adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  ( F `  B ) ) : A --> CC )
8887ffvelrnda 5855 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  ( F `  B ) ) `  m )  e.  CC )
8983, 45, 39, 88, 76fsum 13209 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  ( F `  B ) ) `  m )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  ( F `  B
) )  o.  f
) ) `  ( # `
 A ) ) )
9078, 82, 893eqtr4d 2485 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( F `  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m ) )  =  sum_ m  e.  A  ( ( k  e.  A  |->  ( F `  B ) ) `  m ) )
91 sumfc 13198 . . . . . . 7  |-  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
9291fveq2i 5706 . . . . . 6  |-  ( F `
 sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m ) )  =  ( F `  sum_ k  e.  A  B
)
93 sumfc 13198 . . . . . 6  |-  sum_ m  e.  A  ( (
k  e.  A  |->  ( F `  B ) ) `  m )  =  sum_ k  e.  A  ( F `  B )
9490, 92, 933eqtr3g 2498 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( F `  sum_ k  e.  A  B )  = 
sum_ k  e.  A  ( F `  B ) )
9594expr 615 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) ) )
9695exlimdv 1690 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  ( F `  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `  B )
) )
9796expimpd 603 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  ( F `  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `  B )
) )
98 fsumre.1 . . 3  |-  ( ph  ->  A  e.  Fin )
99 fz1f1o 13199 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
10098, 99syl 16 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
10132, 97, 100mpjaod 381 1  |-  ( ph  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2727   _Vcvv 2984   (/)c0 3649    e. cmpt 4362    o. ccom 4856   -->wf 5426   -1-1-onto->wf1o 5429   ` cfv 5430  (class class class)co 6103   Fincfn 7322   CCcc 9292   0cc0 9294   1c1 9295    + caddc 9297   NNcn 10334   ZZ>=cuz 10873   ...cfz 11449    seqcseq 11818   #chash 12115   sum_csu 13175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-oi 7736  df-card 8121  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-n0 10592  df-z 10659  df-uz 10874  df-rp 11004  df-fz 11450  df-fzo 11561  df-seq 11819  df-exp 11878  df-hash 12116  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-clim 12978  df-sum 13176
This theorem is referenced by:  fsumre  13283  fsumim  13284  fsumcj  13285
  Copyright terms: Public domain W3C validator