MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumparts Structured version   Unicode version

Theorem fsumparts 13853
Description: Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fsumparts.b  |-  ( k  =  j  ->  ( A  =  B  /\  V  =  W )
)
fsumparts.c  |-  ( k  =  ( j  +  1 )  ->  ( A  =  C  /\  V  =  X )
)
fsumparts.d  |-  ( k  =  M  ->  ( A  =  D  /\  V  =  Y )
)
fsumparts.e  |-  ( k  =  N  ->  ( A  =  E  /\  V  =  Z )
)
fsumparts.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumparts.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fsumparts.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  V  e.  CC )
Assertion
Ref Expression
fsumparts  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( ( ( E  x.  Z )  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X ) ) )
Distinct variable groups:    A, j    B, k    C, k    D, k   
k, E    j, V    k, W    j, k, M   
j, N, k    ph, j,
k    k, X    k, Y    k, Z
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)    V( k)    W( j)    X( j)    Y( j)    Z( j)

Proof of Theorem fsumparts
StepHypRef Expression
1 sum0 13774 . . . 4  |-  sum_ j  e.  (/)  ( B  x.  ( X  -  W
) )  =  0
2 0m0e0 10719 . . . 4  |-  ( 0  -  0 )  =  0
31, 2eqtr4i 2454 . . 3  |-  sum_ j  e.  (/)  ( B  x.  ( X  -  W
) )  =  ( 0  -  0 )
4 simpr 462 . . . . . 6  |-  ( (
ph  /\  N  =  M )  ->  N  =  M )
54oveq2d 6317 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  ( M..^ M ) )
6 fzo0 11942 . . . . 5  |-  ( M..^ M )  =  (/)
75, 6syl6eq 2479 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  (/) )
87sumeq1d 13754 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  sum_ j  e.  (/)  ( B  x.  ( X  -  W
) ) )
9 fsumparts.1 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
10 eluzfz1 11806 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
119, 10syl 17 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
12 eqtr3 2450 . . . . . . . . . . . 12  |-  ( ( k  =  M  /\  N  =  M )  ->  k  =  N )
13 fsumparts.e . . . . . . . . . . . 12  |-  ( k  =  N  ->  ( A  =  E  /\  V  =  Z )
)
14 oveq12 6310 . . . . . . . . . . . 12  |-  ( ( A  =  E  /\  V  =  Z )  ->  ( A  x.  V
)  =  ( E  x.  Z ) )
1512, 13, 143syl 18 . . . . . . . . . . 11  |-  ( ( k  =  M  /\  N  =  M )  ->  ( A  x.  V
)  =  ( E  x.  Z ) )
16 fsumparts.d . . . . . . . . . . . . 13  |-  ( k  =  M  ->  ( A  =  D  /\  V  =  Y )
)
17 oveq12 6310 . . . . . . . . . . . . 13  |-  ( ( A  =  D  /\  V  =  Y )  ->  ( A  x.  V
)  =  ( D  x.  Y ) )
1816, 17syl 17 . . . . . . . . . . . 12  |-  ( k  =  M  ->  ( A  x.  V )  =  ( D  x.  Y ) )
1918adantr 466 . . . . . . . . . . 11  |-  ( ( k  =  M  /\  N  =  M )  ->  ( A  x.  V
)  =  ( D  x.  Y ) )
2015, 19eqeq12d 2444 . . . . . . . . . 10  |-  ( ( k  =  M  /\  N  =  M )  ->  ( ( A  x.  V )  =  ( A  x.  V )  <-> 
( E  x.  Z
)  =  ( D  x.  Y ) ) )
2120pm5.74da 691 . . . . . . . . 9  |-  ( k  =  M  ->  (
( N  =  M  ->  ( A  x.  V )  =  ( A  x.  V ) )  <->  ( N  =  M  ->  ( E  x.  Z )  =  ( D  x.  Y ) ) ) )
22 eqidd 2423 . . . . . . . . 9  |-  ( N  =  M  ->  ( A  x.  V )  =  ( A  x.  V ) )
2321, 22vtoclg 3139 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  ( N  =  M  ->  ( E  x.  Z )  =  ( D  x.  Y ) ) )
2423imp 430 . . . . . . 7  |-  ( ( M  e.  ( M ... N )  /\  N  =  M )  ->  ( E  x.  Z
)  =  ( D  x.  Y ) )
2511, 24sylan 473 . . . . . 6  |-  ( (
ph  /\  N  =  M )  ->  ( E  x.  Z )  =  ( D  x.  Y ) )
2625oveq1d 6316 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  (
( E  x.  Z
)  -  ( D  x.  Y ) )  =  ( ( D  x.  Y )  -  ( D  x.  Y
) ) )
27 fsumparts.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
2827ralrimiva 2839 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
2916simpld 460 . . . . . . . . . . 11  |-  ( k  =  M  ->  A  =  D )
3029eleq1d 2491 . . . . . . . . . 10  |-  ( k  =  M  ->  ( A  e.  CC  <->  D  e.  CC ) )
3130rspcv 3178 . . . . . . . . 9  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  D  e.  CC ) )
3211, 28, 31sylc 62 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
33 fsumparts.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  V  e.  CC )
3433ralrimiva 2839 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) V  e.  CC )
3516simprd 464 . . . . . . . . . . 11  |-  ( k  =  M  ->  V  =  Y )
3635eleq1d 2491 . . . . . . . . . 10  |-  ( k  =  M  ->  ( V  e.  CC  <->  Y  e.  CC ) )
3736rspcv 3178 . . . . . . . . 9  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) V  e.  CC  ->  Y  e.  CC ) )
3811, 34, 37sylc 62 . . . . . . . 8  |-  ( ph  ->  Y  e.  CC )
3932, 38mulcld 9663 . . . . . . 7  |-  ( ph  ->  ( D  x.  Y
)  e.  CC )
4039subidd 9974 . . . . . 6  |-  ( ph  ->  ( ( D  x.  Y )  -  ( D  x.  Y )
)  =  0 )
4140adantr 466 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  (
( D  x.  Y
)  -  ( D  x.  Y ) )  =  0 )
4226, 41eqtrd 2463 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  (
( E  x.  Z
)  -  ( D  x.  Y ) )  =  0 )
437sumeq1d 13754 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  sum_ j  e.  (/)  ( ( C  -  B )  x.  X ) )
44 sum0 13774 . . . . 5  |-  sum_ j  e.  (/)  ( ( C  -  B )  x.  X )  =  0
4543, 44syl6eq 2479 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  0 )
4642, 45oveq12d 6319 . . 3  |-  ( (
ph  /\  N  =  M )  ->  (
( ( E  x.  Z )  -  ( D  x.  Y )
)  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
) )  =  ( 0  -  0 ) )
473, 8, 463eqtr4a 2489 . 2  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  ( ( ( E  x.  Z
)  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X ) ) )
48 simpr 462 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
49 eluzel2 11164 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
509, 49syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
5150adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
52 fzp1ss 11847 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
5351, 52syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 ) ... N )  C_  ( M ... N ) )
5453sselda 3464 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
5527, 33mulcld 9663 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( A  x.  V )  e.  CC )
5655adantlr 719 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... N
) )  ->  ( A  x.  V )  e.  CC )
5754, 56syldan 472 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A  x.  V )  e.  CC )
5813, 14syl 17 . . . . . . . . 9  |-  ( k  =  N  ->  ( A  x.  V )  =  ( E  x.  Z ) )
5948, 57, 58fsumm1 13799 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( A  x.  V )  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) ( A  x.  V
)  +  ( E  x.  Z ) ) )
60 eluzelz 11168 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
619, 60syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
6261adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ZZ )
63 fzoval 11921 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
6462, 63syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
6551zcnd 11041 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  CC )
66 ax-1cn 9597 . . . . . . . . . . . . 13  |-  1  e.  CC
67 pncan 9881 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
6865, 66, 67sylancl 666 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )  -  1 )  =  M )
6968oveq1d 6316 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
( M  +  1 )  -  1 ) ... ( N  - 
1 ) )  =  ( M ... ( N  -  1 ) ) )
7064, 69eqtr4d 2466 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( ( ( M  + 
1 )  -  1 ) ... ( N  -  1 ) ) )
7170sumeq1d 13754 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  sum_ j  e.  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) ) ( C  x.  X ) )
72 1zzd 10968 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  1  e.  ZZ )
7351peano2zd 11043 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  e.  ZZ )
74 fsumparts.c . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( A  =  C  /\  V  =  X )
)
75 oveq12 6310 . . . . . . . . . . 11  |-  ( ( A  =  C  /\  V  =  X )  ->  ( A  x.  V
)  =  ( C  x.  X ) )
7674, 75syl 17 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  ( A  x.  V )  =  ( C  x.  X ) )
7772, 73, 62, 57, 76fsumshftm 13829 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( A  x.  V )  =  sum_ j  e.  ( (
( M  +  1 )  -  1 ) ... ( N  - 
1 ) ) ( C  x.  X ) )
7871, 77eqtr4d 2466 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( A  x.  V ) )
79 fzoval 11921 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( M  +  1 )..^ N )  =  ( ( M  + 
1 ) ... ( N  -  1 ) ) )
8062, 79syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
8180sumeq1d 13754 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
)  =  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) ( A  x.  V ) )
8281oveq1d 6316 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( E  x.  Z
) )  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) ( A  x.  V
)  +  ( E  x.  Z ) ) )
8359, 78, 823eqtr4d 2473 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( E  x.  Z
) ) )
84 fzofi 12186 . . . . . . . . . 10  |-  ( ( M  +  1 )..^ N )  e.  Fin
8584a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  e.  Fin )
86 uzid 11173 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
87 peano2uz 11212 . . . . . . . . . . . 12  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
88 fzoss1 11945 . . . . . . . . . . . 12  |-  ( ( M  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( M  +  1 )..^ N )  C_  ( M..^ N ) )
8951, 86, 87, 884syl 19 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  C_  ( M..^ N ) )
9089sselda 3464 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  k  e.  ( M..^ N ) )
91 elfzofz 11935 . . . . . . . . . . . 12  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( M ... N ) )
9291, 55sylan2 476 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A  x.  V )  e.  CC )
9392adantlr 719 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M..^ N ) )  ->  ( A  x.  V )  e.  CC )
9490, 93syldan 472 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  ( A  x.  V )  e.  CC )
9585, 94fsumcl 13786 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
)  e.  CC )
96 eluzfz2 11807 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
979, 96syl 17 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( M ... N ) )
9813simpld 460 . . . . . . . . . . . . 13  |-  ( k  =  N  ->  A  =  E )
9998eleq1d 2491 . . . . . . . . . . . 12  |-  ( k  =  N  ->  ( A  e.  CC  <->  E  e.  CC ) )
10099rspcv 3178 . . . . . . . . . . 11  |-  ( N  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  E  e.  CC ) )
10197, 28, 100sylc 62 . . . . . . . . . 10  |-  ( ph  ->  E  e.  CC )
10213simprd 464 . . . . . . . . . . . . 13  |-  ( k  =  N  ->  V  =  Z )
103102eleq1d 2491 . . . . . . . . . . . 12  |-  ( k  =  N  ->  ( V  e.  CC  <->  Z  e.  CC ) )
104103rspcv 3178 . . . . . . . . . . 11  |-  ( N  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) V  e.  CC  ->  Z  e.  CC ) )
10597, 34, 104sylc 62 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  CC )
106101, 105mulcld 9663 . . . . . . . . 9  |-  ( ph  ->  ( E  x.  Z
)  e.  CC )
107106adantr 466 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( E  x.  Z )  e.  CC )
10895, 107addcomd 9835 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( E  x.  Z
) )  =  ( ( E  x.  Z
)  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) )
10983, 108eqtrd 2463 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  ( ( E  x.  Z )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) )
110109oveq1d 6316 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) ( C  x.  X )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X ) )  =  ( ( ( E  x.  Z )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
111 fzofzp1 12007 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
11274simpld 460 . . . . . . . . . . . 12  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
113112eleq1d 2491 . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( A  e.  CC  <->  C  e.  CC ) )
114113rspccva 3181 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... N ) A  e.  CC  /\  ( j  +  1 )  e.  ( M ... N ) )  ->  C  e.  CC )
11528, 111, 114syl2an 479 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  C  e.  CC )
116 elfzofz 11935 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( M ... N ) )
117 fsumparts.b . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( A  =  B  /\  V  =  W )
)
118117simpld 460 . . . . . . . . . . . 12  |-  ( k  =  j  ->  A  =  B )
119118eleq1d 2491 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( A  e.  CC  <->  B  e.  CC ) )
120119rspccva 3181 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... N ) A  e.  CC  /\  j  e.  ( M ... N ) )  ->  B  e.  CC )
12128, 116, 120syl2an 479 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  B  e.  CC )
12274simprd 464 . . . . . . . . . . . 12  |-  ( k  =  ( j  +  1 )  ->  V  =  X )
123122eleq1d 2491 . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( V  e.  CC  <->  X  e.  CC ) )
124123rspccva 3181 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... N ) V  e.  CC  /\  ( j  +  1 )  e.  ( M ... N ) )  ->  X  e.  CC )
12534, 111, 124syl2an 479 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  X  e.  CC )
126115, 121, 125subdird 10075 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( ( C  -  B )  x.  X )  =  ( ( C  x.  X
)  -  ( B  x.  X ) ) )
127126sumeq2dv 13756 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X )  =  sum_ j  e.  ( M..^ N ) ( ( C  x.  X
)  -  ( B  x.  X ) ) )
128 fzofi 12186 . . . . . . . . 9  |-  ( M..^ N )  e.  Fin
129128a1i 11 . . . . . . . 8  |-  ( ph  ->  ( M..^ N )  e.  Fin )
130115, 125mulcld 9663 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( C  x.  X )  e.  CC )
131121, 125mulcld 9663 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( B  x.  X )  e.  CC )
132129, 130, 131fsumsub 13836 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( C  x.  X
)  -  ( B  x.  X ) )  =  ( sum_ j  e.  ( M..^ N ) ( C  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
133127, 132eqtrd 2463 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X )  =  ( sum_ j  e.  ( M..^ N ) ( C  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
134133adantr 466 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  ( sum_ j  e.  ( M..^ N ) ( C  x.  X )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X ) ) )
135129, 131fsumcl 13786 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  X )  e.  CC )
136135adantr 466 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  X
)  e.  CC )
137107, 136, 95subsub3d 10016 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) )  =  ( ( ( E  x.  Z )  + 
sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
138110, 134, 1373eqtr4d 2473 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) ) )
139138oveq2d 6317 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
( E  x.  Z
)  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X ) )  =  ( ( ( E  x.  Z
)  -  ( D  x.  Y ) )  -  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) ) ) )
14039adantr 466 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( D  x.  Y )  e.  CC )
141136, 95subcld 9986 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  e.  CC )
142107, 140, 141nnncan1d 10020 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
( E  x.  Z
)  -  ( D  x.  Y ) )  -  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) ) )  =  ( ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) )  -  ( D  x.  Y )
) )
14395, 140addcomd 9835 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y
) )  =  ( ( D  x.  Y
)  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) )
144 eluzp1m1 11182 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
14550, 144sylan 473 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
14664eleq2d 2492 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( k  e.  ( M..^ N )  <-> 
k  e.  ( M ... ( N  - 
1 ) ) ) )
147146biimpar 487 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  k  e.  ( M..^ N ) )
148147, 93syldan 472 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( A  x.  V )  e.  CC )
149145, 148, 18fsum1p 13801 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) ( A  x.  V )  =  ( ( D  x.  Y
)  +  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) ( A  x.  V ) ) )
15064sumeq1d 13754 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) ( A  x.  V
)  =  sum_ k  e.  ( M ... ( N  -  1 ) ) ( A  x.  V ) )
15181oveq2d 6317 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( D  x.  Y )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  =  ( ( D  x.  Y )  +  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) ( A  x.  V
) ) )
152149, 150, 1513eqtr4d 2473 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) ( A  x.  V
)  =  ( ( D  x.  Y )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) )
153143, 152eqtr4d 2466 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y
) )  =  sum_ k  e.  ( M..^ N ) ( A  x.  V ) )
154 oveq12 6310 . . . . . . . 8  |-  ( ( A  =  B  /\  V  =  W )  ->  ( A  x.  V
)  =  ( B  x.  W ) )
155117, 154syl 17 . . . . . . 7  |-  ( k  =  j  ->  ( A  x.  V )  =  ( B  x.  W ) )
156155cbvsumv 13749 . . . . . 6  |-  sum_ k  e.  ( M..^ N ) ( A  x.  V
)  =  sum_ j  e.  ( M..^ N ) ( B  x.  W
)
157153, 156syl6eq 2479 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y
) )  =  sum_ j  e.  ( M..^ N ) ( B  x.  W ) )
158157oveq2d 6317 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y ) ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  W
) ) )
159136, 95, 140subsub4d 10017 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  ( D  x.  Y ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  ( sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
)  +  ( D  x.  Y ) ) ) )
160117simprd 464 . . . . . . . . . . 11  |-  ( k  =  j  ->  V  =  W )
161160eleq1d 2491 . . . . . . . . . 10  |-  ( k  =  j  ->  ( V  e.  CC  <->  W  e.  CC ) )
162161rspccva 3181 . . . . . . . . 9  |-  ( ( A. k  e.  ( M ... N ) V  e.  CC  /\  j  e.  ( M ... N ) )  ->  W  e.  CC )
16334, 116, 162syl2an 479 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  W  e.  CC )
164121, 125, 163subdid 10074 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( B  x.  ( X  -  W
) )  =  ( ( B  x.  X
)  -  ( B  x.  W ) ) )
165164sumeq2dv 13756 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  sum_ j  e.  ( M..^ N ) ( ( B  x.  X
)  -  ( B  x.  W ) ) )
166121, 163mulcld 9663 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( B  x.  W )  e.  CC )
167129, 131, 166fsumsub 13836 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( B  x.  X
)  -  ( B  x.  W ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  W
) ) )
168165, 167eqtrd 2463 . . . . 5  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  W
) ) )
169168adantr 466 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ j  e.  ( M..^ N ) ( B  x.  W ) ) )
170158, 159, 1693eqtr4d 2473 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  ( D  x.  Y ) )  = 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) ) )
171139, 142, 1703eqtrrd 2468 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  ( ( ( E  x.  Z
)  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X ) ) )
172 uzp1 11192 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
1739, 172syl 17 . 2  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
17447, 171, 173mpjaodan 793 1  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( ( ( E  x.  Z )  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1868   A.wral 2775    C_ wss 3436   (/)c0 3761   ` cfv 5597  (class class class)co 6301   Fincfn 7573   CCcc 9537   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544    - cmin 9860   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11784  ..^cfzo 11915   sum_csu 13739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-er 7367  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-sup 7958  df-oi 8027  df-card 8374  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-fzo 11916  df-seq 12213  df-exp 12272  df-hash 12515  df-cj 13150  df-re 13151  df-im 13152  df-sqrt 13286  df-abs 13287  df-clim 13539  df-sum 13740
This theorem is referenced by:  dchrisumlem2  24314  selberg2lem  24374  logdivbnd  24380  pntrsumo1  24389  pntrlog2bndlem2  24402  pntrlog2bndlem4  24404
  Copyright terms: Public domain W3C validator