MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsump1i Structured version   Unicode version

Theorem fsump1i 13543
Description: Optimized version of fsump1 13530 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsump1i.1  |-  Z  =  ( ZZ>= `  M )
fsump1i.2  |-  N  =  ( K  +  1 )
fsump1i.3  |-  ( k  =  N  ->  A  =  B )
fsump1i.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
fsump1i.5  |-  ( ph  ->  ( K  e.  Z  /\  sum_ k  e.  ( M ... K ) A  =  S ) )
fsump1i.6  |-  ( ph  ->  ( S  +  B
)  =  T )
Assertion
Ref Expression
fsump1i  |-  ( ph  ->  ( N  e.  Z  /\  sum_ k  e.  ( M ... N ) A  =  T ) )
Distinct variable groups:    B, k    k, K    k, M    k, N    ph, k
Allowed substitution hints:    A( k)    S( k)    T( k)    Z( k)

Proof of Theorem fsump1i
StepHypRef Expression
1 fsump1i.2 . . 3  |-  N  =  ( K  +  1 )
2 fsump1i.5 . . . . . 6  |-  ( ph  ->  ( K  e.  Z  /\  sum_ k  e.  ( M ... K ) A  =  S ) )
32simpld 459 . . . . 5  |-  ( ph  ->  K  e.  Z )
4 fsump1i.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
53, 4syl6eleq 2565 . . . 4  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
6 peano2uz 11130 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
76, 4syl6eleqr 2566 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  Z )
85, 7syl 16 . . 3  |-  ( ph  ->  ( K  +  1 )  e.  Z )
91, 8syl5eqel 2559 . 2  |-  ( ph  ->  N  e.  Z )
101oveq2i 6293 . . . . 5  |-  ( M ... N )  =  ( M ... ( K  +  1 ) )
1110sumeq1i 13479 . . . 4  |-  sum_ k  e.  ( M ... N
) A  =  sum_ k  e.  ( M ... ( K  +  1 ) ) A
12 elfzuz 11680 . . . . . . 7  |-  ( k  e.  ( M ... ( K  +  1
) )  ->  k  e.  ( ZZ>= `  M )
)
1312, 4syl6eleqr 2566 . . . . . 6  |-  ( k  e.  ( M ... ( K  +  1
) )  ->  k  e.  Z )
14 fsump1i.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
1513, 14sylan2 474 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... ( K  +  1 ) ) )  ->  A  e.  CC )
161eqeq2i 2485 . . . . . 6  |-  ( k  =  N  <->  k  =  ( K  +  1
) )
17 fsump1i.3 . . . . . 6  |-  ( k  =  N  ->  A  =  B )
1816, 17sylbir 213 . . . . 5  |-  ( k  =  ( K  + 
1 )  ->  A  =  B )
195, 15, 18fsump1 13530 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... ( K  +  1 ) ) A  =  ( sum_ k  e.  ( M ... K ) A  +  B ) )
2011, 19syl5eq 2520 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... K ) A  +  B ) )
212simprd 463 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... K ) A  =  S )
2221oveq1d 6297 . . 3  |-  ( ph  ->  ( sum_ k  e.  ( M ... K ) A  +  B )  =  ( S  +  B ) )
23 fsump1i.6 . . 3  |-  ( ph  ->  ( S  +  B
)  =  T )
2420, 22, 233eqtrd 2512 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  T )
259, 24jca 532 1  |-  ( ph  ->  ( N  e.  Z  /\  sum_ k  e.  ( M ... N ) A  =  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   ` cfv 5586  (class class class)co 6282   CCcc 9486   1c1 9489    + caddc 9491   ZZ>=cuz 11078   ...cfz 11668   sum_csu 13467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-sum 13468
This theorem is referenced by:  itgcnlem  21931  vieta1  22442  ipval2  25293  subfacval2  28271
  Copyright terms: Public domain W3C validator