MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsump1i Unicode version

Theorem fsump1i 12508
Description: Optimized version of fsump1 12495 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsump1i.1  |-  Z  =  ( ZZ>= `  M )
fsump1i.2  |-  N  =  ( K  +  1 )
fsump1i.3  |-  ( k  =  N  ->  A  =  B )
fsump1i.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
fsump1i.5  |-  ( ph  ->  ( K  e.  Z  /\  sum_ k  e.  ( M ... K ) A  =  S ) )
fsump1i.6  |-  ( ph  ->  ( S  +  B
)  =  T )
Assertion
Ref Expression
fsump1i  |-  ( ph  ->  ( N  e.  Z  /\  sum_ k  e.  ( M ... N ) A  =  T ) )
Distinct variable groups:    B, k    k, K    k, M    k, N    ph, k
Allowed substitution hints:    A( k)    S( k)    T( k)    Z( k)

Proof of Theorem fsump1i
StepHypRef Expression
1 fsump1i.2 . . 3  |-  N  =  ( K  +  1 )
2 fsump1i.5 . . . . . 6  |-  ( ph  ->  ( K  e.  Z  /\  sum_ k  e.  ( M ... K ) A  =  S ) )
32simpld 446 . . . . 5  |-  ( ph  ->  K  e.  Z )
4 fsump1i.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
53, 4syl6eleq 2494 . . . 4  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
6 peano2uz 10486 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
76, 4syl6eleqr 2495 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  Z )
85, 7syl 16 . . 3  |-  ( ph  ->  ( K  +  1 )  e.  Z )
91, 8syl5eqel 2488 . 2  |-  ( ph  ->  N  e.  Z )
101oveq2i 6051 . . . . 5  |-  ( M ... N )  =  ( M ... ( K  +  1 ) )
1110sumeq1i 12447 . . . 4  |-  sum_ k  e.  ( M ... N
) A  =  sum_ k  e.  ( M ... ( K  +  1 ) ) A
12 elfzuz 11011 . . . . . . 7  |-  ( k  e.  ( M ... ( K  +  1
) )  ->  k  e.  ( ZZ>= `  M )
)
1312, 4syl6eleqr 2495 . . . . . 6  |-  ( k  e.  ( M ... ( K  +  1
) )  ->  k  e.  Z )
14 fsump1i.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
1513, 14sylan2 461 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... ( K  +  1 ) ) )  ->  A  e.  CC )
161eqeq2i 2414 . . . . . 6  |-  ( k  =  N  <->  k  =  ( K  +  1
) )
17 fsump1i.3 . . . . . 6  |-  ( k  =  N  ->  A  =  B )
1816, 17sylbir 205 . . . . 5  |-  ( k  =  ( K  + 
1 )  ->  A  =  B )
195, 15, 18fsump1 12495 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... ( K  +  1 ) ) A  =  ( sum_ k  e.  ( M ... K ) A  +  B ) )
2011, 19syl5eq 2448 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... K ) A  +  B ) )
212simprd 450 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... K ) A  =  S )
2221oveq1d 6055 . . 3  |-  ( ph  ->  ( sum_ k  e.  ( M ... K ) A  +  B )  =  ( S  +  B ) )
23 fsump1i.6 . . 3  |-  ( ph  ->  ( S  +  B
)  =  T )
2420, 22, 233eqtrd 2440 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  T )
259, 24jca 519 1  |-  ( ph  ->  ( N  e.  Z  /\  sum_ k  e.  ( M ... N ) A  =  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   CCcc 8944   1c1 8947    + caddc 8949   ZZ>=cuz 10444   ...cfz 10999   sum_csu 12434
This theorem is referenced by:  itgcnlem  19634  vieta1  20182  ipval2  22156  subfacval2  24826
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435
  Copyright terms: Public domain W3C validator