MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumo1 Structured version   Unicode version

Theorem fsumo1 13606
Description: The finite sum of eventually bounded functions (where the index set  B does not depend on  x) is eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
fsumo1.1  |-  ( ph  ->  A  C_  RR )
fsumo1.2  |-  ( ph  ->  B  e.  Fin )
fsumo1.3  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  V )
fsumo1.4  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  e.  O(1) )
Assertion
Ref Expression
fsumo1  |-  ( ph  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  e.  O(1) )
Distinct variable groups:    x, k, A    B, k, x    ph, k, x
Allowed substitution hints:    C( x, k)    V( x, k)

Proof of Theorem fsumo1
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3528 . 2  |-  B  C_  B
2 fsumo1.2 . . 3  |-  ( ph  ->  B  e.  Fin )
3 sseq1 3530 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  B  <->  (/)  C_  B
) )
4 sumeq1 13491 . . . . . . . . 9  |-  ( w  =  (/)  ->  sum_ k  e.  w  C  =  sum_ k  e.  (/)  C )
5 sum0 13523 . . . . . . . . 9  |-  sum_ k  e.  (/)  C  =  0
64, 5syl6eq 2524 . . . . . . . 8  |-  ( w  =  (/)  ->  sum_ k  e.  w  C  = 
0 )
76mpteq2dv 4540 . . . . . . 7  |-  ( w  =  (/)  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  0 ) )
87eleq1d 2536 . . . . . 6  |-  ( w  =  (/)  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  O(1)  <->  ( x  e.  A  |->  0 )  e.  O(1) ) )
93, 8imbi12d 320 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  e.  O(1) )  <->  ( (/)  C_  B  ->  ( x  e.  A  |->  0 )  e.  O(1) ) ) )
109imbi2d 316 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  e.  O(1) ) )  <->  ( ph  ->  (
(/)  C_  B  ->  (
x  e.  A  |->  0 )  e.  O(1) ) ) ) )
11 sseq1 3530 . . . . . 6  |-  ( w  =  y  ->  (
w  C_  B  <->  y  C_  B ) )
12 sumeq1 13491 . . . . . . . 8  |-  ( w  =  y  ->  sum_ k  e.  w  C  =  sum_ k  e.  y  C )
1312mpteq2dv 4540 . . . . . . 7  |-  ( w  =  y  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ k  e.  y  C )
)
1413eleq1d 2536 . . . . . 6  |-  ( w  =  y  ->  (
( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  O(1)  <->  (
x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1) ) )
1511, 14imbi12d 320 . . . . 5  |-  ( w  =  y  ->  (
( w  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  O(1) )  <-> 
( y  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O(1) ) ) )
1615imbi2d 316 . . . 4  |-  ( w  =  y  ->  (
( ph  ->  ( w 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  e.  O(1) ) )  <-> 
( ph  ->  ( y 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1) ) ) ) )
17 sseq1 3530 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  B 
<->  ( y  u.  {
z } )  C_  B ) )
18 sumeq1 13491 . . . . . . . 8  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  C  =  sum_ k  e.  ( y  u.  {
z } ) C )
1918mpteq2dv 4540 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C ) )
2019eleq1d 2536 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  O(1)  <-> 
( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) ) )
2117, 20imbi12d 320 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  e.  O(1) )  <->  ( (
y  u.  { z } )  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) ) ) )
2221imbi2d 316 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ph  ->  ( w  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  O(1) ) )  <->  ( ph  ->  ( ( y  u.  {
z } )  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) ) ) ) )
23 sseq1 3530 . . . . . 6  |-  ( w  =  B  ->  (
w  C_  B  <->  B  C_  B
) )
24 sumeq1 13491 . . . . . . . 8  |-  ( w  =  B  ->  sum_ k  e.  w  C  =  sum_ k  e.  B  C
)
2524mpteq2dv 4540 . . . . . . 7  |-  ( w  =  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ k  e.  B  C )
)
2625eleq1d 2536 . . . . . 6  |-  ( w  =  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  O(1)  <->  (
x  e.  A  |->  sum_ k  e.  B  C
)  e.  O(1) ) )
2723, 26imbi12d 320 . . . . 5  |-  ( w  =  B  ->  (
( w  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  O(1) )  <-> 
( B  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  e.  O(1) ) ) )
2827imbi2d 316 . . . 4  |-  ( w  =  B  ->  (
( ph  ->  ( w 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  e.  O(1) ) )  <-> 
( ph  ->  ( B 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  B  C
)  e.  O(1) ) ) ) )
29 fsumo1.1 . . . . . 6  |-  ( ph  ->  A  C_  RR )
30 0cn 9600 . . . . . 6  |-  0  e.  CC
31 o1const 13422 . . . . . 6  |-  ( ( A  C_  RR  /\  0  e.  CC )  ->  (
x  e.  A  |->  0 )  e.  O(1) )
3229, 30, 31sylancl 662 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  0 )  e.  O(1) )
3332a1d 25 . . . 4  |-  ( ph  ->  ( (/)  C_  B  -> 
( x  e.  A  |->  0 )  e.  O(1) ) )
34 ssun1 3672 . . . . . . . . . 10  |-  y  C_  ( y  u.  {
z } )
35 sstr 3517 . . . . . . . . . 10  |-  ( ( y  C_  ( y  u.  { z } )  /\  ( y  u. 
{ z } ) 
C_  B )  -> 
y  C_  B )
3634, 35mpan 670 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  B  ->  y  C_  B )
3736imim1i 58 . . . . . . . 8  |-  ( ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1) )  -> 
( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1) ) )
38 simprl 755 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  -.  z  e.  y
)
39 disjsn 4094 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
4038, 39sylibr 212 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( y  i^i  {
z } )  =  (/) )
4140adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( y  i^i  {
z } )  =  (/) )
42 eqidd 2468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( y  u.  {
z } )  =  ( y  u.  {
z } ) )
432adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  B  e.  Fin )
44 simprr 756 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( y  u.  {
z } )  C_  B )
45 ssfi 7752 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  Fin  /\  ( y  u.  {
z } )  C_  B )  ->  (
y  u.  { z } )  e.  Fin )
4643, 44, 45syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( y  u.  {
z } )  e. 
Fin )
4746adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( y  u.  {
z } )  e. 
Fin )
4844sselda 3509 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  k  e.  ( y  u.  { z } ) )  ->  k  e.  B )
4948adantlr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  k  e.  ( y  u.  {
z } ) )  ->  k  e.  B
)
50 fsumo1.3 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  V )
5150anass1rs 805 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  B )  /\  x  e.  A )  ->  C  e.  V )
52 fsumo1.4 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  e.  O(1) )
5351, 52o1mptrcl 13425 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  B )  /\  x  e.  A )  ->  C  e.  CC )
5453an32s 802 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
5554adantllr 718 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  k  e.  B )  ->  C  e.  CC )
5649, 55syldan 470 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  k  e.  ( y  u.  {
z } ) )  ->  C  e.  CC )
5741, 42, 47, 56fsumsplit 13542 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  ( y  u.  { z } ) C  =  ( sum_ k  e.  y  C  +  sum_ k  e.  { z } C
) )
58 nfcv 2629 . . . . . . . . . . . . . . . . . . 19  |-  F/_ w C
59 nfcsb1v 3456 . . . . . . . . . . . . . . . . . . 19  |-  F/_ k [_ w  /  k ]_ C
60 csbeq1a 3449 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  w  ->  C  =  [_ w  /  k ]_ C )
6158, 59, 60cbvsumi 13499 . . . . . . . . . . . . . . . . . 18  |-  sum_ k  e.  { z } C  =  sum_ w  e.  {
z } [_ w  /  k ]_ C
6244unssbd 3687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  { z }  C_  B )
63 vex 3121 . . . . . . . . . . . . . . . . . . . . . 22  |-  z  e. 
_V
6463snss 4157 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  B  <->  { z }  C_  B )
6562, 64sylibr 212 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
z  e.  B )
6665adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  z  e.  B )
6755ralrimiva 2881 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  A. k  e.  B  C  e.  CC )
68 nfcsb1v 3456 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/_ k [_ z  /  k ]_ C
6968nfel1 2645 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ k
[_ z  /  k ]_ C  e.  CC
70 csbeq1a 3449 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  z  ->  C  =  [_ z  /  k ]_ C )
7170eleq1d 2536 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  z  ->  ( C  e.  CC  <->  [_ z  / 
k ]_ C  e.  CC ) )
7269, 71rspc 3213 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  ( A. k  e.  B  C  e.  CC  ->  [_ z  /  k ]_ C  e.  CC )
)
7366, 67, 72sylc 60 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  [_ z  /  k ]_ C  e.  CC )
74 csbeq1 3443 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  z  ->  [_ w  /  k ]_ C  =  [_ z  /  k ]_ C )
7574sumsn 13543 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  B  /\  [_ z  /  k ]_ C  e.  CC )  -> 
sum_ w  e.  { z } [_ w  / 
k ]_ C  =  [_ z  /  k ]_ C
)
7666, 73, 75syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ w  e.  { z } [_ w  / 
k ]_ C  =  [_ z  /  k ]_ C
)
7761, 76syl5eq 2520 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  {
z } C  = 
[_ z  /  k ]_ C )
7877oveq2d 6311 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( sum_ k  e.  y  C  +  sum_ k  e.  { z } C
)  =  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C ) )
7957, 78eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  ( y  u.  { z } ) C  =  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C
) )
8079mpteq2dva 4539 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  =  ( x  e.  A  |->  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C ) ) )
8129adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  A  C_  RR )
82 reex 9595 . . . . . . . . . . . . . . . . 17  |-  RR  e.  _V
8382ssex 4597 . . . . . . . . . . . . . . . 16  |-  ( A 
C_  RR  ->  A  e. 
_V )
8481, 83syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  A  e.  _V )
85 sumex 13490 . . . . . . . . . . . . . . . 16  |-  sum_ k  e.  y  C  e.  _V
8685a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  y  C  e.  _V )
87 eqidd 2468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
sum_ k  e.  y  C )  =  ( x  e.  A  |->  sum_ k  e.  y  C ) )
88 eqidd 2468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
[_ z  /  k ]_ C )  =  ( x  e.  A  |->  [_ z  /  k ]_ C
) )
8984, 86, 73, 87, 88offval2 6551 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( ( x  e.  A  |->  sum_ k  e.  y  C )  oF  +  ( x  e.  A  |->  [_ z  /  k ]_ C ) )  =  ( x  e.  A  |->  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C
) ) )
9080, 89eqtr4d 2511 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  =  ( ( x  e.  A  |->  sum_ k  e.  y  C )  oF  +  (
x  e.  A  |->  [_ z  /  k ]_ C
) ) )
9190adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O(1) )  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  =  ( ( x  e.  A  |->  sum_ k  e.  y  C )  oF  +  (
x  e.  A  |->  [_ z  /  k ]_ C
) ) )
92 id 22 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1)  ->  (
x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1) )
9352ralrimiva 2881 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  B  ( x  e.  A  |->  C )  e.  O(1) )
9493adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  A. k  e.  B  ( x  e.  A  |->  C )  e.  O(1) )
95 nfcv 2629 . . . . . . . . . . . . . . . . 17  |-  F/_ k A
9695, 68nfmpt 4541 . . . . . . . . . . . . . . . 16  |-  F/_ k
( x  e.  A  |-> 
[_ z  /  k ]_ C )
9796nfel1 2645 . . . . . . . . . . . . . . 15  |-  F/ k ( x  e.  A  |-> 
[_ z  /  k ]_ C )  e.  O(1)
9870mpteq2dv 4540 . . . . . . . . . . . . . . . 16  |-  ( k  =  z  ->  (
x  e.  A  |->  C )  =  ( x  e.  A  |->  [_ z  /  k ]_ C
) )
9998eleq1d 2536 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  (
( x  e.  A  |->  C )  e.  O(1)  <->  (
x  e.  A  |->  [_ z  /  k ]_ C
)  e.  O(1) ) )
10097, 99rspc 3213 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  ( A. k  e.  B  ( x  e.  A  |->  C )  e.  O(1)  -> 
( x  e.  A  |-> 
[_ z  /  k ]_ C )  e.  O(1) ) )
10165, 94, 100sylc 60 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
[_ z  /  k ]_ C )  e.  O(1) )
102 o1add 13416 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O(1)  /\  ( x  e.  A  |-> 
[_ z  /  k ]_ C )  e.  O(1) )  ->  ( ( x  e.  A  |->  sum_ k  e.  y  C )  oF  +  (
x  e.  A  |->  [_ z  /  k ]_ C
) )  e.  O(1) )
10392, 101, 102syl2anr 478 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O(1) )  ->  ( ( x  e.  A  |->  sum_ k  e.  y  C )  oF  +  (
x  e.  A  |->  [_ z  /  k ]_ C
) )  e.  O(1) )
10491, 103eqeltrd 2555 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O(1) )  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) )
105104ex 434 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1)  -> 
( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) ) )
106105expr 615 . . . . . . . . 9  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( y  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1)  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) ) ) )
107106a2d 26 . . . . . . . 8  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1) )  -> 
( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) ) ) )
10837, 107syl5 32 . . . . . . 7  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( y  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O(1) )  ->  ( ( y  u.  { z } )  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) ) ) )
109108expcom 435 . . . . . 6  |-  ( -.  z  e.  y  -> 
( ph  ->  ( ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1) )  -> 
( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) ) ) ) )
110109a2d 26 . . . . 5  |-  ( -.  z  e.  y  -> 
( ( ph  ->  ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1) ) )  ->  ( ph  ->  ( ( y  u.  {
z } )  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) ) ) ) )
111110adantl 466 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( ph  ->  ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O(1) ) )  ->  ( ph  ->  ( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O(1) ) ) ) )
11210, 16, 22, 28, 33, 111findcard2s 7773 . . 3  |-  ( B  e.  Fin  ->  ( ph  ->  ( B  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  B  C )  e.  O(1) ) ) )
1132, 112mpcom 36 . 2  |-  ( ph  ->  ( B  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  e.  O(1) ) )
1141, 113mpi 17 1  |-  ( ph  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118   [_csb 3440    u. cun 3479    i^i cin 3480    C_ wss 3481   (/)c0 3790   {csn 4033    |-> cmpt 4511  (class class class)co 6295    oFcof 6533   Fincfn 7528   CCcc 9502   RRcr 9503   0cc0 9504    + caddc 9507   O(1)co1 13289   sum_csu 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-oi 7947  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-ico 11547  df-fz 11685  df-fzo 11805  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-clim 13291  df-rlim 13292  df-o1 13293  df-sum 13489
This theorem is referenced by:  rpvmasum2  23563
  Copyright terms: Public domain W3C validator