MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumo1 Unicode version

Theorem fsumo1 12546
Description: The finite sum of eventually bounded functions (where the index set  B does not depend on  x) is eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
fsumo1.1  |-  ( ph  ->  A  C_  RR )
fsumo1.2  |-  ( ph  ->  B  e.  Fin )
fsumo1.3  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  V )
fsumo1.4  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  e.  O ( 1 ) )
Assertion
Ref Expression
fsumo1  |-  ( ph  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  e.  O
( 1 ) )
Distinct variable groups:    x, k, A    B, k, x    ph, k, x
Allowed substitution hints:    C( x, k)    V( x, k)

Proof of Theorem fsumo1
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3327 . 2  |-  B  C_  B
2 fsumo1.2 . . 3  |-  ( ph  ->  B  e.  Fin )
3 sseq1 3329 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  B  <->  (/)  C_  B
) )
4 sumeq1 12438 . . . . . . . . 9  |-  ( w  =  (/)  ->  sum_ k  e.  w  C  =  sum_ k  e.  (/)  C )
5 sum0 12470 . . . . . . . . 9  |-  sum_ k  e.  (/)  C  =  0
64, 5syl6eq 2452 . . . . . . . 8  |-  ( w  =  (/)  ->  sum_ k  e.  w  C  = 
0 )
76mpteq2dv 4256 . . . . . . 7  |-  ( w  =  (/)  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  0 ) )
87eleq1d 2470 . . . . . 6  |-  ( w  =  (/)  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  O ( 1 )  <->  ( x  e.  A  |->  0 )  e.  O ( 1 ) ) )
93, 8imbi12d 312 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  e.  O ( 1 ) )  <->  ( (/)  C_  B  ->  ( x  e.  A  |->  0 )  e.  O
( 1 ) ) ) )
109imbi2d 308 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  e.  O
( 1 ) ) )  <->  ( ph  ->  (
(/)  C_  B  ->  (
x  e.  A  |->  0 )  e.  O ( 1 ) ) ) ) )
11 sseq1 3329 . . . . . 6  |-  ( w  =  y  ->  (
w  C_  B  <->  y  C_  B ) )
12 sumeq1 12438 . . . . . . . 8  |-  ( w  =  y  ->  sum_ k  e.  w  C  =  sum_ k  e.  y  C )
1312mpteq2dv 4256 . . . . . . 7  |-  ( w  =  y  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ k  e.  y  C )
)
1413eleq1d 2470 . . . . . 6  |-  ( w  =  y  ->  (
( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  O
( 1 )  <->  ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O ( 1 ) ) )
1511, 14imbi12d 312 . . . . 5  |-  ( w  =  y  ->  (
( w  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  O
( 1 ) )  <-> 
( y  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O
( 1 ) ) ) )
1615imbi2d 308 . . . 4  |-  ( w  =  y  ->  (
( ph  ->  ( w 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  e.  O ( 1 ) ) )  <-> 
( ph  ->  ( y 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  y  C )  e.  O ( 1 ) ) ) ) )
17 sseq1 3329 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  B 
<->  ( y  u.  {
z } )  C_  B ) )
18 sumeq1 12438 . . . . . . . 8  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  C  =  sum_ k  e.  ( y  u.  {
z } ) C )
1918mpteq2dv 4256 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C ) )
2019eleq1d 2470 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  O ( 1 )  <-> 
( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) ) )
2117, 20imbi12d 312 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  e.  O ( 1 ) )  <->  ( (
y  u.  { z } )  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) ) ) )
2221imbi2d 308 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ph  ->  ( w  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  O
( 1 ) ) )  <->  ( ph  ->  ( ( y  u.  {
z } )  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) ) ) ) )
23 sseq1 3329 . . . . . 6  |-  ( w  =  B  ->  (
w  C_  B  <->  B  C_  B
) )
24 sumeq1 12438 . . . . . . . 8  |-  ( w  =  B  ->  sum_ k  e.  w  C  =  sum_ k  e.  B  C
)
2524mpteq2dv 4256 . . . . . . 7  |-  ( w  =  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ k  e.  B  C )
)
2625eleq1d 2470 . . . . . 6  |-  ( w  =  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  O
( 1 )  <->  ( x  e.  A  |->  sum_ k  e.  B  C )  e.  O ( 1 ) ) )
2723, 26imbi12d 312 . . . . 5  |-  ( w  =  B  ->  (
( w  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  O
( 1 ) )  <-> 
( B  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  e.  O
( 1 ) ) ) )
2827imbi2d 308 . . . 4  |-  ( w  =  B  ->  (
( ph  ->  ( w 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  e.  O ( 1 ) ) )  <-> 
( ph  ->  ( B 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  B  C
)  e.  O ( 1 ) ) ) ) )
29 fsumo1.1 . . . . . 6  |-  ( ph  ->  A  C_  RR )
30 0cn 9040 . . . . . 6  |-  0  e.  CC
31 o1const 12368 . . . . . 6  |-  ( ( A  C_  RR  /\  0  e.  CC )  ->  (
x  e.  A  |->  0 )  e.  O ( 1 ) )
3229, 30, 31sylancl 644 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  0 )  e.  O
( 1 ) )
3332a1d 23 . . . 4  |-  ( ph  ->  ( (/)  C_  B  -> 
( x  e.  A  |->  0 )  e.  O
( 1 ) ) )
34 ssun1 3470 . . . . . . . . . 10  |-  y  C_  ( y  u.  {
z } )
35 sstr 3316 . . . . . . . . . 10  |-  ( ( y  C_  ( y  u.  { z } )  /\  ( y  u. 
{ z } ) 
C_  B )  -> 
y  C_  B )
3634, 35mpan 652 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  B  ->  y  C_  B )
3736imim1i 56 . . . . . . . 8  |-  ( ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O ( 1 ) )  -> 
( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  y  C )  e.  O ( 1 ) ) )
38 simprl 733 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  -.  z  e.  y
)
39 disjsn 3828 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
4038, 39sylibr 204 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( y  i^i  {
z } )  =  (/) )
4140adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( y  i^i  {
z } )  =  (/) )
42 eqidd 2405 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( y  u.  {
z } )  =  ( y  u.  {
z } ) )
432adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  B  e.  Fin )
44 simprr 734 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( y  u.  {
z } )  C_  B )
45 ssfi 7288 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  Fin  /\  ( y  u.  {
z } )  C_  B )  ->  (
y  u.  { z } )  e.  Fin )
4643, 44, 45syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( y  u.  {
z } )  e. 
Fin )
4746adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( y  u.  {
z } )  e. 
Fin )
4844sselda 3308 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  k  e.  ( y  u.  { z } ) )  ->  k  e.  B )
4948adantlr 696 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  k  e.  ( y  u.  {
z } ) )  ->  k  e.  B
)
50 fsumo1.3 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  V )
5150anass1rs 783 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  B )  /\  x  e.  A )  ->  C  e.  V )
52 fsumo1.4 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  e.  O ( 1 ) )
5351, 52o1mptrcl 12371 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  B )  /\  x  e.  A )  ->  C  e.  CC )
5453an32s 780 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
5554adantllr 700 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  k  e.  B )  ->  C  e.  CC )
5649, 55syldan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  k  e.  ( y  u.  {
z } ) )  ->  C  e.  CC )
5741, 42, 47, 56fsumsplit 12488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  ( y  u.  { z } ) C  =  ( sum_ k  e.  y  C  +  sum_ k  e.  { z } C
) )
58 nfcv 2540 . . . . . . . . . . . . . . . . . . 19  |-  F/_ w C
59 nfcsb1v 3243 . . . . . . . . . . . . . . . . . . 19  |-  F/_ k [_ w  /  k ]_ C
60 csbeq1a 3219 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  w  ->  C  =  [_ w  /  k ]_ C )
6158, 59, 60cbvsumi 12446 . . . . . . . . . . . . . . . . . 18  |-  sum_ k  e.  { z } C  =  sum_ w  e.  {
z } [_ w  /  k ]_ C
6244unssbd 3485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  { z }  C_  B )
63 vex 2919 . . . . . . . . . . . . . . . . . . . . . 22  |-  z  e. 
_V
6463snss 3886 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  B  <->  { z }  C_  B )
6562, 64sylibr 204 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
z  e.  B )
6665adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  z  e.  B )
6755ralrimiva 2749 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  A. k  e.  B  C  e.  CC )
68 nfcsb1v 3243 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/_ k [_ z  /  k ]_ C
6968nfel1 2550 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ k
[_ z  /  k ]_ C  e.  CC
70 csbeq1a 3219 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  z  ->  C  =  [_ z  /  k ]_ C )
7170eleq1d 2470 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  z  ->  ( C  e.  CC  <->  [_ z  / 
k ]_ C  e.  CC ) )
7269, 71rspc 3006 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  ( A. k  e.  B  C  e.  CC  ->  [_ z  /  k ]_ C  e.  CC )
)
7366, 67, 72sylc 58 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  [_ z  /  k ]_ C  e.  CC )
74 csbeq1 3214 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  z  ->  [_ w  /  k ]_ C  =  [_ z  /  k ]_ C )
7574sumsn 12489 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  B  /\  [_ z  /  k ]_ C  e.  CC )  -> 
sum_ w  e.  { z } [_ w  / 
k ]_ C  =  [_ z  /  k ]_ C
)
7666, 73, 75syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ w  e.  { z } [_ w  / 
k ]_ C  =  [_ z  /  k ]_ C
)
7761, 76syl5eq 2448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  {
z } C  = 
[_ z  /  k ]_ C )
7877oveq2d 6056 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( sum_ k  e.  y  C  +  sum_ k  e.  { z } C
)  =  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C ) )
7957, 78eqtrd 2436 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  ( y  u.  { z } ) C  =  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C
) )
8079mpteq2dva 4255 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  =  ( x  e.  A  |->  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C ) ) )
8129adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  A  C_  RR )
82 reex 9037 . . . . . . . . . . . . . . . . 17  |-  RR  e.  _V
8382ssex 4307 . . . . . . . . . . . . . . . 16  |-  ( A 
C_  RR  ->  A  e. 
_V )
8481, 83syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  A  e.  _V )
85 sumex 12436 . . . . . . . . . . . . . . . 16  |-  sum_ k  e.  y  C  e.  _V
8685a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  y  C  e.  _V )
87 eqidd 2405 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
sum_ k  e.  y  C )  =  ( x  e.  A  |->  sum_ k  e.  y  C ) )
88 eqidd 2405 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
[_ z  /  k ]_ C )  =  ( x  e.  A  |->  [_ z  /  k ]_ C
) )
8984, 86, 73, 87, 88offval2 6281 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( ( x  e.  A  |->  sum_ k  e.  y  C )  o F  +  ( x  e.  A  |->  [_ z  /  k ]_ C ) )  =  ( x  e.  A  |->  ( sum_ k  e.  y  C  +  [_ z  /  k ]_ C
) ) )
9080, 89eqtr4d 2439 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  =  ( ( x  e.  A  |->  sum_ k  e.  y  C )  o F  +  (
x  e.  A  |->  [_ z  /  k ]_ C
) ) )
9190adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O
( 1 ) )  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  =  ( ( x  e.  A  |->  sum_ k  e.  y  C )  o F  +  (
x  e.  A  |->  [_ z  /  k ]_ C
) ) )
92 id 20 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O ( 1 )  ->  (
x  e.  A  |->  sum_ k  e.  y  C )  e.  O ( 1 ) )
9352ralrimiva 2749 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  B  ( x  e.  A  |->  C )  e.  O
( 1 ) )
9493adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  ->  A. k  e.  B  ( x  e.  A  |->  C )  e.  O
( 1 ) )
95 nfcv 2540 . . . . . . . . . . . . . . . . 17  |-  F/_ k A
9695, 68nfmpt 4257 . . . . . . . . . . . . . . . 16  |-  F/_ k
( x  e.  A  |-> 
[_ z  /  k ]_ C )
9796nfel1 2550 . . . . . . . . . . . . . . 15  |-  F/ k ( x  e.  A  |-> 
[_ z  /  k ]_ C )  e.  O
( 1 )
9870mpteq2dv 4256 . . . . . . . . . . . . . . . 16  |-  ( k  =  z  ->  (
x  e.  A  |->  C )  =  ( x  e.  A  |->  [_ z  /  k ]_ C
) )
9998eleq1d 2470 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  (
( x  e.  A  |->  C )  e.  O
( 1 )  <->  ( x  e.  A  |->  [_ z  /  k ]_ C
)  e.  O ( 1 ) ) )
10097, 99rspc 3006 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  ( A. k  e.  B  ( x  e.  A  |->  C )  e.  O
( 1 )  -> 
( x  e.  A  |-> 
[_ z  /  k ]_ C )  e.  O
( 1 ) ) )
10165, 94, 100sylc 58 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( x  e.  A  |-> 
[_ z  /  k ]_ C )  e.  O
( 1 ) )
102 o1add 12362 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O
( 1 )  /\  ( x  e.  A  |-> 
[_ z  /  k ]_ C )  e.  O
( 1 ) )  ->  ( ( x  e.  A  |->  sum_ k  e.  y  C )  o F  +  (
x  e.  A  |->  [_ z  /  k ]_ C
) )  e.  O
( 1 ) )
10392, 101, 102syl2anr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O
( 1 ) )  ->  ( ( x  e.  A  |->  sum_ k  e.  y  C )  o F  +  (
x  e.  A  |->  [_ z  /  k ]_ C
) )  e.  O
( 1 ) )
10491, 103eqeltrd 2478 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  /\  ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O
( 1 ) )  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) )
105104ex 424 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  z  e.  y  /\  ( y  u.  {
z } )  C_  B ) )  -> 
( ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O
( 1 )  -> 
( x  e.  A  |-> 
sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) ) )
106105expr 599 . . . . . . . . 9  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( y  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O ( 1 )  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) ) ) )
107106a2d 24 . . . . . . . 8  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  y  C )  e.  O ( 1 ) )  -> 
( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) ) ) )
10837, 107syl5 30 . . . . . . 7  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( y  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  y  C )  e.  O
( 1 ) )  ->  ( ( y  u.  { z } )  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) ) ) )
109108expcom 425 . . . . . 6  |-  ( -.  z  e.  y  -> 
( ph  ->  ( ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O ( 1 ) )  -> 
( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) ) ) ) )
110109a2d 24 . . . . 5  |-  ( -.  z  e.  y  -> 
( ( ph  ->  ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O ( 1 ) ) )  ->  ( ph  ->  ( ( y  u.  {
z } )  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) ) ) ) )
111110adantl 453 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( ph  ->  ( y  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  y  C )  e.  O
( 1 ) ) )  ->  ( ph  ->  ( ( y  u. 
{ z } ) 
C_  B  ->  (
x  e.  A  |->  sum_ k  e.  ( y  u.  { z } ) C )  e.  O ( 1 ) ) ) ) )
11210, 16, 22, 28, 33, 111findcard2s 7308 . . 3  |-  ( B  e.  Fin  ->  ( ph  ->  ( B  C_  B  ->  ( x  e.  A  |->  sum_ k  e.  B  C )  e.  O
( 1 ) ) ) )
1132, 112mpcom 34 . 2  |-  ( ph  ->  ( B  C_  B  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  e.  O
( 1 ) ) )
1141, 113mpi 17 1  |-  ( ph  ->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  e.  O
( 1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916   [_csb 3211    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774    e. cmpt 4226  (class class class)co 6040    o Fcof 6262   Fincfn 7068   CCcc 8944   RRcr 8945   0cc0 8946    + caddc 8949   O ( 1 )co1 12235   sum_csu 12434
This theorem is referenced by:  rpvmasum2  21159
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-ico 10878  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-o1 12239  df-sum 12435
  Copyright terms: Public domain W3C validator