MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsummulc2 Structured version   Unicode version

Theorem fsummulc2 13234
Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsummulc2.1  |-  ( ph  ->  A  e.  Fin )
fsummulc2.2  |-  ( ph  ->  C  e.  CC )
fsummulc2.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsummulc2  |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) )
Distinct variable groups:    A, k    C, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsummulc2
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsummulc2.2 . . . 4  |-  ( ph  ->  C  e.  CC )
21mul01d 9556 . . 3  |-  ( ph  ->  ( C  x.  0 )  =  0 )
3 sumeq1 13150 . . . . . 6  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
4 sum0 13182 . . . . . 6  |-  sum_ k  e.  (/)  B  =  0
53, 4syl6eq 2481 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  = 
0 )
65oveq2d 6096 . . . 4  |-  ( A  =  (/)  ->  ( C  x.  sum_ k  e.  A  B )  =  ( C  x.  0 ) )
7 sumeq1 13150 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( C  x.  B )  =  sum_ k  e.  (/)  ( C  x.  B ) )
8 sum0 13182 . . . . 5  |-  sum_ k  e.  (/)  ( C  x.  B )  =  0
97, 8syl6eq 2481 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( C  x.  B )  =  0 )
106, 9eqeq12d 2447 . . 3  |-  ( A  =  (/)  ->  ( ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B
)  <->  ( C  x.  0 )  =  0 ) )
112, 10syl5ibrcom 222 . 2  |-  ( ph  ->  ( A  =  (/)  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) ) )
12 addcl 9352 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( n  +  m
)  e.  CC )
1312adantl 463 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  ( n  +  m )  e.  CC )
141adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  C  e.  CC )
15 adddi 9359 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  n  e.  CC  /\  m  e.  CC )  ->  ( C  x.  ( n  +  m ) )  =  ( ( C  x.  n )  +  ( C  x.  m ) ) )
16153expb 1181 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  ( C  x.  ( n  +  m
) )  =  ( ( C  x.  n
)  +  ( C  x.  m ) ) )
1714, 16sylan 468 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  ( C  x.  ( n  +  m
) )  =  ( ( C  x.  n
)  +  ( C  x.  m ) ) )
18 simprl 748 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
19 nnuz 10884 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
2018, 19syl6eleq 2523 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
21 fsummulc2.3 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
22 eqid 2433 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
2321, 22fmptd 5855 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2423ad2antrr 718 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
25 simprr 749 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
2625adantr 462 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
27 f1of 5629 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
2826, 27syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
f : ( 1 ... ( # `  A
) ) --> A )
29 fco 5556 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
3024, 28, 29syl2anc 654 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A ) ) --> CC )
31 simpr 458 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  n  e.  ( 1 ... ( # `  A
) ) )
3230, 31ffvelrnd 5832 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  e.  CC )
3328, 31ffvelrnd 5832 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( f `  n
)  e.  A )
34 simpr 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
351adantr 462 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
3635, 21mulcld 9394 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  ( C  x.  B )  e.  CC )
37 eqid 2433 . . . . . . . . . . . . . . 15  |-  ( k  e.  A  |->  ( C  x.  B ) )  =  ( k  e.  A  |->  ( C  x.  B ) )
3837fvmpt2 5769 . . . . . . . . . . . . . 14  |-  ( ( k  e.  A  /\  ( C  x.  B
)  e.  CC )  ->  ( ( k  e.  A  |->  ( C  x.  B ) ) `
 k )  =  ( C  x.  B
) )
3934, 36, 38syl2anc 654 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  k
)  =  ( C  x.  B ) )
4022fvmpt2 5769 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  k )  =  B )
4134, 21, 40syl2anc 654 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  B ) `  k
)  =  B )
4241oveq2d 6096 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( C  x.  ( (
k  e.  A  |->  B ) `  k ) )  =  ( C  x.  B ) )
4339, 42eqtr4d 2468 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  k
)  =  ( C  x.  ( ( k  e.  A  |->  B ) `
 k ) ) )
4443ralrimiva 2789 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) ) )
4544ad2antrr 718 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  A. k  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) ) )
46 nffvmpt1 5687 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  n
) )
47 nfcv 2569 . . . . . . . . . . . . 13  |-  F/_ k C
48 nfcv 2569 . . . . . . . . . . . . 13  |-  F/_ k  x.
49 nffvmpt1 5687 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  B ) `  ( f `  n
) )
5047, 48, 49nfov 6103 . . . . . . . . . . . 12  |-  F/_ k
( C  x.  (
( k  e.  A  |->  B ) `  (
f `  n )
) )
5146, 50nfeq 2576 . . . . . . . . . . 11  |-  F/ k ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  n
) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
52 fveq2 5679 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  k
)  =  ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `
 n ) ) )
53 fveq2 5679 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  k
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
5453oveq2d 6096 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  ( C  x.  ( (
k  e.  A  |->  B ) `  k ) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `
 ( f `  n ) ) ) )
5552, 54eqeq12d 2447 . . . . . . . . . . 11  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) )  <->  ( ( k  e.  A  |->  ( C  x.  B ) ) `
 ( f `  n ) )  =  ( C  x.  (
( k  e.  A  |->  B ) `  (
f `  n )
) ) ) )
5651, 55rspc 3056 . . . . . . . . . 10  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) )  ->  ( (
k  e.  A  |->  ( C  x.  B ) ) `  ( f `
 n ) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `  n
) ) ) ) )
5733, 45, 56sylc 60 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  n
) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) ) )
5827ad2antll 721 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
59 fvco3 5756 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( C  x.  B
) ) `  (
f `  n )
) )
6058, 59sylan 468 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( C  x.  B
) ) `  (
f `  n )
) )
61 fvco3 5756 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
6258, 61sylan 468 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
6362oveq2d 6096 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( C  x.  (
( ( k  e.  A  |->  B )  o.  f ) `  n
) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) ) )
6457, 60, 633eqtr4d 2475 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n )  =  ( C  x.  ( ( ( k  e.  A  |->  B )  o.  f
) `  n )
) )
6513, 17, 20, 32, 64seqdistr 11841 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (  seq 1 (  +  , 
( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) ) `  ( # `  A ) )  =  ( C  x.  (  seq 1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) ) )
66 fveq2 5679 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  m
)  =  ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `
 n ) ) )
6736, 37fmptd 5855 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  ( C  x.  B
) ) : A --> CC )
6867adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  ( C  x.  B ) ) : A --> CC )
6968ffvelrnda 5831 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  ( C  x.  B ) ) `  m )  e.  CC )
7066, 18, 25, 69, 60fsum 13181 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  ( C  x.  B ) ) `  m )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  ( C  x.  B
) )  o.  f
) ) `  ( # `
 A ) ) )
71 fveq2 5679 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
7223adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
7372ffvelrnda 5831 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
7471, 18, 25, 73, 62fsum 13181 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
7574oveq2d 6096 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m ) )  =  ( C  x.  (  seq 1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) ) ) )
7665, 70, 753eqtr4rd 2476 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m ) )  =  sum_ m  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  m ) )
77 sumfc 13170 . . . . . . 7  |-  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
7877oveq2i 6091 . . . . . 6  |-  ( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m ) )  =  ( C  x.  sum_ k  e.  A  B
)
79 sumfc 13170 . . . . . 6  |-  sum_ m  e.  A  ( (
k  e.  A  |->  ( C  x.  B ) ) `  m )  =  sum_ k  e.  A  ( C  x.  B
)
8076, 78, 793eqtr3g 2488 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( C  x.  sum_ k  e.  A  B )  = 
sum_ k  e.  A  ( C  x.  B
) )
8180expr 610 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) ) )
8281exlimdv 1689 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B )
) )
8382expimpd 598 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B )
) )
84 fsummulc2.1 . . 3  |-  ( ph  ->  A  e.  Fin )
85 fz1f1o 13171 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
8684, 85syl 16 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
8711, 83, 86mpjaod 381 1  |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1362   E.wex 1589    e. wcel 1755   A.wral 2705   (/)c0 3625    e. cmpt 4338    o. ccom 4831   -->wf 5402   -1-1-onto->wf1o 5405   ` cfv 5406  (class class class)co 6080   Fincfn 7298   CCcc 9268   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275   NNcn 10310   ZZ>=cuz 10849   ...cfz 11424    seqcseq 11790   #chash 12087   sum_csu 13147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-rp 10980  df-fz 11425  df-fzo 11533  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148
This theorem is referenced by:  fsummulc1  13235  fsumneg  13237  fsum2mul  13239  incexc2  13284  mertens  13329  eirrlem  13469  csbren  20740  trirn  20741  itg1addlem4  21019  itg1addlem5  21020  itg1mulc  21024  elqaalem3  21672  advlogexp  21985  fsumharmonic  22290  basellem8  22310  muinv  22418  fsumdvdsmul  22420  logfaclbnd  22446  dchrsum2  22492  sumdchr2  22494  rplogsumlem2  22619  rpvmasumlem  22621  dchrmusum2  22628  dchrvmasumlem1  22629  dchrvmasum2lem  22630  dchrvmasumlem2  22632  dchrvmasumiflem1  22635  rpvmasum2  22646  dchrisum0lem2  22652  mudivsum  22664  mulogsum  22666  mulog2sumlem1  22668  mulog2sumlem2  22669  mulog2sumlem3  22670  vmalogdivsum2  22672  logsqvma  22676  selberglem1  22679  selberglem2  22680  selberg  22682  selberg3lem1  22691  selberg4lem1  22694  selberg4  22695  selbergr  22702  selberg3r  22703  selberg34r  22705  pntsval2  22710  pntrlog2bndlem2  22712  pntrlog2bndlem3  22713  pntrlog2bndlem4  22714  pntrlog2bndlem6  22717  pntpbnd2  22721  pntlemk  22740  axsegconlem9  22994  ax5seglem1  22997  ax5seglem2  22998  ax5seglem9  23006  binomrisefac  27392  fsumkthpow  28046  jm2.22  29189  stoweidlem26  29667  stirlinglem12  29726
  Copyright terms: Public domain W3C validator