MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsummulc2 Unicode version

Theorem fsummulc2 12522
Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsummulc2.1  |-  ( ph  ->  A  e.  Fin )
fsummulc2.2  |-  ( ph  ->  C  e.  CC )
fsummulc2.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsummulc2  |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) )
Distinct variable groups:    A, k    C, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsummulc2
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsummulc2.2 . . . 4  |-  ( ph  ->  C  e.  CC )
21mul01d 9221 . . 3  |-  ( ph  ->  ( C  x.  0 )  =  0 )
3 sumeq1 12438 . . . . . 6  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
4 sum0 12470 . . . . . 6  |-  sum_ k  e.  (/)  B  =  0
53, 4syl6eq 2452 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  = 
0 )
65oveq2d 6056 . . . 4  |-  ( A  =  (/)  ->  ( C  x.  sum_ k  e.  A  B )  =  ( C  x.  0 ) )
7 sumeq1 12438 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( C  x.  B )  =  sum_ k  e.  (/)  ( C  x.  B ) )
8 sum0 12470 . . . . 5  |-  sum_ k  e.  (/)  ( C  x.  B )  =  0
97, 8syl6eq 2452 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( C  x.  B )  =  0 )
106, 9eqeq12d 2418 . . 3  |-  ( A  =  (/)  ->  ( ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B
)  <->  ( C  x.  0 )  =  0 ) )
112, 10syl5ibrcom 214 . 2  |-  ( ph  ->  ( A  =  (/)  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) ) )
12 addcl 9028 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( n  +  m
)  e.  CC )
1312adantl 453 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  ( n  +  m )  e.  CC )
141adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  C  e.  CC )
15 adddi 9035 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  n  e.  CC  /\  m  e.  CC )  ->  ( C  x.  ( n  +  m ) )  =  ( ( C  x.  n )  +  ( C  x.  m ) ) )
16153expb 1154 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  ( C  x.  ( n  +  m
) )  =  ( ( C  x.  n
)  +  ( C  x.  m ) ) )
1714, 16sylan 458 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  ( C  x.  ( n  +  m
) )  =  ( ( C  x.  n
)  +  ( C  x.  m ) ) )
18 simprl 733 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
19 nnuz 10477 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
2018, 19syl6eleq 2494 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
21 fsummulc2.3 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
22 eqid 2404 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
2321, 22fmptd 5852 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2423ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
25 simprr 734 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
2625adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
27 f1of 5633 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
2826, 27syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
f : ( 1 ... ( # `  A
) ) --> A )
29 fco 5559 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
3024, 28, 29syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A ) ) --> CC )
31 simpr 448 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  n  e.  ( 1 ... ( # `  A
) ) )
3230, 31ffvelrnd 5830 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  e.  CC )
3328, 31ffvelrnd 5830 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( f `  n
)  e.  A )
34 simpr 448 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
351adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
3635, 21mulcld 9064 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  ( C  x.  B )  e.  CC )
37 eqid 2404 . . . . . . . . . . . . . . 15  |-  ( k  e.  A  |->  ( C  x.  B ) )  =  ( k  e.  A  |->  ( C  x.  B ) )
3837fvmpt2 5771 . . . . . . . . . . . . . 14  |-  ( ( k  e.  A  /\  ( C  x.  B
)  e.  CC )  ->  ( ( k  e.  A  |->  ( C  x.  B ) ) `
 k )  =  ( C  x.  B
) )
3934, 36, 38syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  k
)  =  ( C  x.  B ) )
4022fvmpt2 5771 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  k )  =  B )
4134, 21, 40syl2anc 643 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  B ) `  k
)  =  B )
4241oveq2d 6056 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( C  x.  ( (
k  e.  A  |->  B ) `  k ) )  =  ( C  x.  B ) )
4339, 42eqtr4d 2439 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  k
)  =  ( C  x.  ( ( k  e.  A  |->  B ) `
 k ) ) )
4443ralrimiva 2749 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) ) )
4544ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  A. k  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) ) )
46 nffvmpt1 5695 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  n
) )
47 nfcv 2540 . . . . . . . . . . . . 13  |-  F/_ k C
48 nfcv 2540 . . . . . . . . . . . . 13  |-  F/_ k  x.
49 nffvmpt1 5695 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  B ) `  ( f `  n
) )
5047, 48, 49nfov 6063 . . . . . . . . . . . 12  |-  F/_ k
( C  x.  (
( k  e.  A  |->  B ) `  (
f `  n )
) )
5146, 50nfeq 2547 . . . . . . . . . . 11  |-  F/ k ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  n
) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
52 fveq2 5687 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  k
)  =  ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `
 n ) ) )
53 fveq2 5687 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  k
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
5453oveq2d 6056 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  ( C  x.  ( (
k  e.  A  |->  B ) `  k ) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `
 ( f `  n ) ) ) )
5552, 54eqeq12d 2418 . . . . . . . . . . 11  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) )  <->  ( ( k  e.  A  |->  ( C  x.  B ) ) `
 ( f `  n ) )  =  ( C  x.  (
( k  e.  A  |->  B ) `  (
f `  n )
) ) ) )
5651, 55rspc 3006 . . . . . . . . . 10  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) )  ->  ( (
k  e.  A  |->  ( C  x.  B ) ) `  ( f `
 n ) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `  n
) ) ) ) )
5733, 45, 56sylc 58 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  n
) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) ) )
5827ad2antll 710 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
59 fvco3 5759 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( C  x.  B
) ) `  (
f `  n )
) )
6058, 59sylan 458 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( C  x.  B
) ) `  (
f `  n )
) )
61 fvco3 5759 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
6258, 61sylan 458 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
6362oveq2d 6056 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( C  x.  (
( ( k  e.  A  |->  B )  o.  f ) `  n
) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) ) )
6457, 60, 633eqtr4d 2446 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n )  =  ( C  x.  ( ( ( k  e.  A  |->  B )  o.  f
) `  n )
) )
6513, 17, 20, 32, 64seqdistr 11329 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (  seq  1 (  +  , 
( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) ) `  ( # `  A ) )  =  ( C  x.  (  seq  1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) ) )
66 fveq2 5687 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  m
)  =  ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `
 n ) ) )
6736, 37fmptd 5852 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  ( C  x.  B
) ) : A --> CC )
6867adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  ( C  x.  B ) ) : A --> CC )
6968ffvelrnda 5829 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  ( C  x.  B ) ) `  m )  e.  CC )
7066, 18, 25, 69, 60fsum 12469 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  ( C  x.  B ) ) `  m )  =  (  seq  1
(  +  ,  ( ( k  e.  A  |->  ( C  x.  B
) )  o.  f
) ) `  ( # `
 A ) ) )
71 fveq2 5687 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
7223adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
7372ffvelrnda 5829 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
7471, 18, 25, 73, 62fsum 12469 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  (  seq  1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
7574oveq2d 6056 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m ) )  =  ( C  x.  (  seq  1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) ) ) )
7665, 70, 753eqtr4rd 2447 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m ) )  =  sum_ m  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  m ) )
77 sumfc 12458 . . . . . . 7  |-  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
7877oveq2i 6051 . . . . . 6  |-  ( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m ) )  =  ( C  x.  sum_ k  e.  A  B
)
79 sumfc 12458 . . . . . 6  |-  sum_ m  e.  A  ( (
k  e.  A  |->  ( C  x.  B ) ) `  m )  =  sum_ k  e.  A  ( C  x.  B
)
8076, 78, 793eqtr3g 2459 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( C  x.  sum_ k  e.  A  B )  = 
sum_ k  e.  A  ( C  x.  B
) )
8180expr 599 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) ) )
8281exlimdv 1643 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B )
) )
8382expimpd 587 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B )
) )
84 fsummulc2.1 . . 3  |-  ( ph  ->  A  e.  Fin )
85 fz1f1o 12459 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
8684, 85syl 16 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
8711, 83, 86mpjaod 371 1  |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2666   (/)c0 3588    e. cmpt 4226    o. ccom 4841   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951   NNcn 9956   ZZ>=cuz 10444   ...cfz 10999    seq cseq 11278   #chash 11573   sum_csu 12434
This theorem is referenced by:  fsummulc1  12523  fsumneg  12525  fsum2mul  12527  incexc2  12573  mertens  12618  eirrlem  12758  itg1addlem4  19544  itg1addlem5  19545  itg1mulc  19549  elqaalem3  20191  advlogexp  20499  fsumharmonic  20803  basellem8  20823  muinv  20931  fsumdvdsmul  20933  logfaclbnd  20959  dchrsum2  21005  sumdchr2  21007  rplogsumlem2  21132  rpvmasumlem  21134  dchrmusum2  21141  dchrvmasumlem1  21142  dchrvmasum2lem  21143  dchrvmasumlem2  21145  dchrvmasumiflem1  21148  rpvmasum2  21159  dchrisum0lem2  21165  mudivsum  21177  mulogsum  21179  mulog2sumlem1  21181  mulog2sumlem2  21182  mulog2sumlem3  21183  vmalogdivsum2  21185  logsqvma  21189  selberglem1  21192  selberglem2  21193  selberg  21195  selberg3lem1  21204  selberg4lem1  21207  selberg4  21208  selbergr  21215  selberg3r  21216  selberg34r  21218  pntsval2  21223  pntrlog2bndlem2  21225  pntrlog2bndlem3  21226  pntrlog2bndlem4  21227  pntrlog2bndlem6  21230  pntpbnd2  21234  pntlemk  21253  binomrisefac  25309  axsegconlem9  25768  ax5seglem1  25771  ax5seglem2  25772  ax5seglem9  25780  fsumkthpow  26006  csbrn  26346  trirn  26347  jm2.22  26956  stoweidlem26  27642  stirlinglem12  27701
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435
  Copyright terms: Public domain W3C validator