MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumf1o Structured version   Unicode version

Theorem fsumf1o 13627
Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumf1o.1  |-  ( k  =  G  ->  B  =  D )
fsumf1o.2  |-  ( ph  ->  C  e.  Fin )
fsumf1o.3  |-  ( ph  ->  F : C -1-1-onto-> A )
fsumf1o.4  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
fsumf1o.5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsumf1o  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ n  e.  C  D )
Distinct variable groups:    k, n, A    B, n    C, n    D, k    n, F    k, G    ph, k, n
Allowed substitution hints:    B( k)    C( k)    D( n)    F( k)    G( n)

Proof of Theorem fsumf1o
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sum0 13625 . . . 4  |-  sum_ k  e.  (/)  B  =  0
2 fsumf1o.3 . . . . . . . 8  |-  ( ph  ->  F : C -1-1-onto-> A )
3 f1oeq2 5790 . . . . . . . 8  |-  ( C  =  (/)  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
42, 3syl5ibcom 220 . . . . . . 7  |-  ( ph  ->  ( C  =  (/)  ->  F : (/) -1-1-onto-> A ) )
54imp 427 . . . . . 6  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/) -1-1-onto-> A )
6 f1ofo 5805 . . . . . 6  |-  ( F : (/)
-1-1-onto-> A  ->  F : (/) -onto-> A )
7 fo00 5831 . . . . . . 7  |-  ( F : (/) -onto-> A  <->  ( F  =  (/)  /\  A  =  (/) ) )
87simprbi 462 . . . . . 6  |-  ( F : (/) -onto-> A  ->  A  =  (/) )
95, 6, 83syl 20 . . . . 5  |-  ( (
ph  /\  C  =  (/) )  ->  A  =  (/) )
109sumeq1d 13605 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
11 simpr 459 . . . . . 6  |-  ( (
ph  /\  C  =  (/) )  ->  C  =  (/) )
1211sumeq1d 13605 . . . . 5  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ n  e.  C  D  =  sum_ n  e.  (/)  D )
13 sum0 13625 . . . . 5  |-  sum_ n  e.  (/)  D  =  0
1412, 13syl6eq 2511 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ n  e.  C  D  =  0 )
151, 10, 143eqtr4a 2521 . . 3  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D )
1615ex 432 . 2  |-  ( ph  ->  ( C  =  (/)  -> 
sum_ k  e.  A  B  =  sum_ n  e.  C  D ) )
17 fveq2 5848 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  ( F `  m )  =  ( F `  ( f `  n
) ) )
1817fveq2d 5852 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 ( f `  n ) ) ) )
19 simprl 754 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  ( # `
 C )  e.  NN )
20 simprr 755 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )
21 f1of 5798 . . . . . . . . . . . 12  |-  ( F : C -1-1-onto-> A  ->  F : C
--> A )
222, 21syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F : C --> A )
2322ffvelrnda 6007 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  C )  ->  ( F `  m )  e.  A )
24 fsumf1o.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
25 eqid 2454 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
2624, 25fmptd 6031 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2726ffvelrnda 6007 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( F `
 m ) )  e.  CC )
2823, 27syldan 468 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
2928adantlr 712 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  ( ( k  e.  A  |->  B ) `  ( F `  m ) )  e.  CC )
302adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  F : C -1-1-onto-> A )
31 f1oco 5820 . . . . . . . . . . . 12  |-  ( ( F : C -1-1-onto-> A  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )  ->  ( F  o.  f ) : ( 1 ... ( # `  C
) ) -1-1-onto-> A )
3230, 20, 31syl2anc 659 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  C
) ) -1-1-onto-> A )
33 f1of 5798 . . . . . . . . . . 11  |-  ( ( F  o.  f ) : ( 1 ... ( # `  C
) ) -1-1-onto-> A  ->  ( F  o.  f ) : ( 1 ... ( # `  C ) ) --> A )
3432, 33syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  C
) ) --> A )
35 fvco3 5925 . . . . . . . . . 10  |-  ( ( ( F  o.  f
) : ( 1 ... ( # `  C
) ) --> A  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
( F  o.  f
) `  n )
) )
3634, 35sylan 469 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
( F  o.  f
) `  n )
) )
37 f1of 5798 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  C
) ) -1-1-onto-> C  ->  f :
( 1 ... ( # `
 C ) ) --> C )
3837ad2antll 726 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  f : ( 1 ... ( # `  C
) ) --> C )
39 fvco3 5925 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  C
) ) --> C  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( F  o.  f ) `  n
)  =  ( F `
 ( f `  n ) ) )
4038, 39sylan 469 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( F  o.  f ) `  n
)  =  ( F `
 ( f `  n ) ) )
4140fveq2d 5852 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `  n
) )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `  n ) ) ) )
4236, 41eqtrd 2495 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `  n ) ) ) )
4318, 19, 20, 29, 42fsum 13624 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  sum_ m  e.  C  ( (
k  e.  A  |->  B ) `  ( F `
 m ) )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  B )  o.  ( F  o.  f )
) ) `  ( # `
 C ) ) )
44 fsumf1o.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
4522ffvelrnda 6007 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  e.  A )
4644, 45eqeltrrd 2543 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  G  e.  A )
47 fsumf1o.1 . . . . . . . . . . . . . 14  |-  ( k  =  G  ->  B  =  D )
4847, 25fvmpti 5930 . . . . . . . . . . . . 13  |-  ( G  e.  A  ->  (
( k  e.  A  |->  B ) `  G
)  =  (  _I 
`  D ) )
4946, 48syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  G
)  =  (  _I 
`  D ) )
5044fveq2d 5852 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  G ) )
51 eqid 2454 . . . . . . . . . . . . . 14  |-  ( n  e.  C  |->  D )  =  ( n  e.  C  |->  D )
5251fvmpt2i 5938 . . . . . . . . . . . . 13  |-  ( n  e.  C  ->  (
( n  e.  C  |->  D ) `  n
)  =  (  _I 
`  D ) )
5352adantl 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  (  _I 
`  D ) )
5449, 50, 533eqtr4rd 2506 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 n ) ) )
5554ralrimiva 2868 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
) )
56 nffvmpt1 5856 . . . . . . . . . . . 12  |-  F/_ n
( ( n  e.  C  |->  D ) `  m )
5756nfeq1 2631 . . . . . . . . . . 11  |-  F/ n
( ( n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m )
)
58 fveq2 5848 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( n  e.  C  |->  D ) `  m ) )
59 fveq2 5848 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
6059fveq2d 5852 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6158, 60eqeq12d 2476 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  <->  ( ( n  e.  C  |->  D ) `
 m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m ) ) ) )
6257, 61rspc 3201 . . . . . . . . . 10  |-  ( m  e.  C  ->  ( A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  ->  ( (
n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `
 ( F `  m ) ) ) )
6355, 62mpan9 467 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6463adantlr 712 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  ( ( n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m )
) )
6564sumeq2dv 13607 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  sum_ m  e.  C  ( (
n  e.  C  |->  D ) `  m )  =  sum_ m  e.  C  ( ( k  e.  A  |->  B ) `  ( F `  m ) ) )
66 fveq2 5848 . . . . . . . 8  |-  ( m  =  ( ( F  o.  f ) `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `
 n ) ) )
6726adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
6867ffvelrnda 6007 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
6966, 19, 32, 68, 36fsum 13624 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  B )  o.  ( F  o.  f )
) ) `  ( # `
 C ) ) )
7043, 65, 693eqtr4rd 2506 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  sum_ m  e.  C  ( ( n  e.  C  |->  D ) `  m ) )
71 sumfc 13613 . . . . . 6  |-  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
72 sumfc 13613 . . . . . 6  |-  sum_ m  e.  C  ( (
n  e.  C  |->  D ) `  m )  =  sum_ n  e.  C  D
7370, 71, 723eqtr3g 2518 . . . . 5  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D
)
7473expr 613 . . . 4  |-  ( (
ph  /\  ( # `  C
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D ) )
7574exlimdv 1729 . . 3  |-  ( (
ph  /\  ( # `  C
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  C
) ) -1-1-onto-> C  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D ) )
7675expimpd 601 . 2  |-  ( ph  ->  ( ( ( # `  C )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C )  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D ) )
77 fsumf1o.2 . . 3  |-  ( ph  ->  C  e.  Fin )
78 fz1f1o 13614 . . 3  |-  ( C  e.  Fin  ->  ( C  =  (/)  \/  (
( # `  C )  e.  NN  /\  E. f  f : ( 1 ... ( # `  C ) ) -1-1-onto-> C ) ) )
7977, 78syl 16 . 2  |-  ( ph  ->  ( C  =  (/)  \/  ( ( # `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  C ) ) -1-1-onto-> C ) ) )
8016, 76, 79mpjaod 379 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ n  e.  C  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   A.wral 2804   (/)c0 3783    |-> cmpt 4497    _I cid 4779    o. ccom 4992   -->wf 5566   -onto->wfo 5568   -1-1-onto->wf1o 5569   ` cfv 5570  (class class class)co 6270   Fincfn 7509   CCcc 9479   0cc0 9481   1c1 9482    + caddc 9484   NNcn 10531   ...cfz 11675    seqcseq 12089   #chash 12387   sum_csu 13590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591
This theorem is referenced by:  fsumss  13629  fsum2dlem  13667  fsumcnv  13670  fsumrev  13676  fsumshft  13677  ackbijnn  13722  incexclem  13730  ovoliunlem1  22079  ovolicc2lem4  22097  itg1addlem4  22272  itg1mulc  22277  basellem3  23554  basellem5  23556  fsumdvdscom  23659  dvdsflsumcom  23662  musum  23665  fsumdvdsmul  23669  sgmppw  23670  fsumvma  23686  dchrsum2  23741  sumdchr2  23743  dchrisumlem1  23872  dchrisum0flblem1  23891  dchrisum0fno1  23894  eulerpartlemgs2  28583  phisum  31400  sumnnodd  31875  dvnprodlem2  31983
  Copyright terms: Public domain W3C validator