MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdscom Structured version   Unicode version

Theorem fsumdvdscom 23842
Description: A double commutation of divisor sums based on fsumdvdsdiag 23841. Note that  A depends on both  j and  k. (Contributed by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
fsumdvdscom.1  |-  ( ph  ->  N  e.  NN )
fsumdvdscom.2  |-  ( j  =  ( k  x.  m )  ->  A  =  B )
fsumdvdscom.3  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  j } ) )  ->  A  e.  CC )
Assertion
Ref Expression
fsumdvdscom  |-  ( ph  -> 
sum_ j  e.  {
x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  j } A  =  sum_ k  e.  { x  e.  NN  |  x  ||  N } sum_ m  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } B
)
Distinct variable groups:    A, m    B, j    j, k, m, x, N    ph, j, k, m
Allowed substitution hints:    ph( x)    A( x, j, k)    B( x, k, m)

Proof of Theorem fsumdvdscom
Dummy variables  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2564 . . 3  |-  F/_ u sum_ k  e.  { x  e.  NN  |  x  ||  j } A
2 nfcv 2564 . . . 4  |-  F/_ j { x  e.  NN  |  x  ||  u }
3 nfcsb1v 3389 . . . 4  |-  F/_ j [_ u  /  j ]_ A
42, 3nfsum 13662 . . 3  |-  F/_ j sum_ k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A
5 breq2 4399 . . . . 5  |-  ( j  =  u  ->  (
x  ||  j  <->  x  ||  u
) )
65rabbidv 3051 . . . 4  |-  ( j  =  u  ->  { x  e.  NN  |  x  ||  j }  =  {
x  e.  NN  |  x  ||  u } )
7 csbeq1a 3382 . . . . 5  |-  ( j  =  u  ->  A  =  [_ u  /  j ]_ A )
87adantr 463 . . . 4  |-  ( ( j  =  u  /\  k  e.  { x  e.  NN  |  x  ||  j } )  ->  A  =  [_ u  /  j ]_ A )
96, 8sumeq12dv 13677 . . 3  |-  ( j  =  u  ->  sum_ k  e.  { x  e.  NN  |  x  ||  j } A  =  sum_ k  e.  { x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A )
101, 4, 9cbvsumi 13668 . 2  |-  sum_ j  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  j } A  =  sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A
11 breq2 4399 . . . . . 6  |-  ( u  =  ( N  / 
v )  ->  (
x  ||  u  <->  x  ||  ( N  /  v ) ) )
1211rabbidv 3051 . . . . 5  |-  ( u  =  ( N  / 
v )  ->  { x  e.  NN  |  x  ||  u }  =  {
x  e.  NN  |  x  ||  ( N  / 
v ) } )
13 csbeq1 3376 . . . . . 6  |-  ( u  =  ( N  / 
v )  ->  [_ u  /  j ]_ A  =  [_ ( N  / 
v )  /  j ]_ A )
1413adantr 463 . . . . 5  |-  ( ( u  =  ( N  /  v )  /\  k  e.  { x  e.  NN  |  x  ||  u } )  ->  [_ u  /  j ]_ A  =  [_ ( N  / 
v )  /  j ]_ A )
1512, 14sumeq12dv 13677 . . . 4  |-  ( u  =  ( N  / 
v )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } [_ ( N  /  v )  / 
j ]_ A )
16 fzfid 12124 . . . . 5  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
17 fsumdvdscom.1 . . . . . 6  |-  ( ph  ->  N  e.  NN )
18 sgmss 23761 . . . . . 6  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N ) )
1917, 18syl 17 . . . . 5  |-  ( ph  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N
) )
20 ssfi 7775 . . . . 5  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N
) )  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
2116, 19, 20syl2anc 659 . . . 4  |-  ( ph  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
22 eqid 2402 . . . . . 6  |-  { x  e.  NN  |  x  ||  N }  =  {
x  e.  NN  |  x  ||  N }
23 eqid 2402 . . . . . 6  |-  ( z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) )  =  ( z  e. 
{ x  e.  NN  |  x  ||  N }  |->  ( N  /  z
) )
2422, 23dvdsflip 23839 . . . . 5  |-  ( N  e.  NN  ->  (
z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) : { x  e.  NN  |  x  ||  N } -1-1-onto-> { x  e.  NN  |  x  ||  N }
)
2517, 24syl 17 . . . 4  |-  ( ph  ->  ( z  e.  {
x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) : { x  e.  NN  |  x  ||  N } -1-1-onto-> { x  e.  NN  |  x  ||  N }
)
26 oveq2 6286 . . . . . 6  |-  ( z  =  v  ->  ( N  /  z )  =  ( N  /  v
) )
27 ovex 6306 . . . . . 6  |-  ( N  /  z )  e. 
_V
2826, 23, 27fvmpt3i 5937 . . . . 5  |-  ( v  e.  { x  e.  NN  |  x  ||  N }  ->  ( ( z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) `
 v )  =  ( N  /  v
) )
2928adantl 464 . . . 4  |-  ( (
ph  /\  v  e.  { x  e.  NN  |  x  ||  N } )  ->  ( ( z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) `
 v )  =  ( N  /  v
) )
30 fzfid 12124 . . . . . 6  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( 1 ... u )  e.  Fin )
31 ssrab2 3524 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  N }  C_  NN
32 simpr 459 . . . . . . . 8  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  {
x  e.  NN  |  x  ||  N } )
3331, 32sseldi 3440 . . . . . . 7  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  NN )
34 sgmss 23761 . . . . . . 7  |-  ( u  e.  NN  ->  { x  e.  NN  |  x  ||  u }  C_  ( 1 ... u ) )
3533, 34syl 17 . . . . . 6  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  u }  C_  ( 1 ... u ) )
36 ssfi 7775 . . . . . 6  |-  ( ( ( 1 ... u
)  e.  Fin  /\  { x  e.  NN  |  x  ||  u }  C_  ( 1 ... u
) )  ->  { x  e.  NN  |  x  ||  u }  e.  Fin )
3730, 35, 36syl2anc 659 . . . . 5  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  u }  e.  Fin )
38 fsumdvdscom.3 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  j } ) )  ->  A  e.  CC )
3938ralrimivva 2825 . . . . . . . 8  |-  ( ph  ->  A. j  e.  {
x  e.  NN  |  x  ||  N } A. k  e.  { x  e.  NN  |  x  ||  j } A  e.  CC )
40 nfv 1728 . . . . . . . . 9  |-  F/ u A. k  e.  { x  e.  NN  |  x  ||  j } A  e.  CC
413nfel1 2580 . . . . . . . . . 10  |-  F/ j
[_ u  /  j ]_ A  e.  CC
422, 41nfral 2790 . . . . . . . . 9  |-  F/ j A. k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  e.  CC
437eleq1d 2471 . . . . . . . . . 10  |-  ( j  =  u  ->  ( A  e.  CC  <->  [_ u  / 
j ]_ A  e.  CC ) )
446, 43raleqbidv 3018 . . . . . . . . 9  |-  ( j  =  u  ->  ( A. k  e.  { x  e.  NN  |  x  ||  j } A  e.  CC  <->  A. k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A  e.  CC ) )
4540, 42, 44cbvral 3030 . . . . . . . 8  |-  ( A. j  e.  { x  e.  NN  |  x  ||  N } A. k  e. 
{ x  e.  NN  |  x  ||  j } A  e.  CC  <->  A. u  e.  { x  e.  NN  |  x  ||  N } A. k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A  e.  CC )
4639, 45sylib 196 . . . . . . 7  |-  ( ph  ->  A. u  e.  {
x  e.  NN  |  x  ||  N } A. k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A  e.  CC )
4746r19.21bi 2773 . . . . . 6  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  A. k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  e.  CC )
4847r19.21bi 2773 . . . . 5  |-  ( ( ( ph  /\  u  e.  { x  e.  NN  |  x  ||  N }
)  /\  k  e.  { x  e.  NN  |  x  ||  u } )  ->  [_ u  /  j ]_ A  e.  CC )
4937, 48fsumcl 13704 . . . 4  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  e.  CC )
5015, 21, 25, 29, 49fsumf1o 13694 . . 3  |-  ( ph  -> 
sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  =  sum_ v  e.  {
x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } [_ ( N  /  v )  / 
j ]_ A )
51 dvdsdivcl 23838 . . . . . . . 8  |-  ( ( N  e.  NN  /\  v  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  v )  e. 
{ x  e.  NN  |  x  ||  N }
)
5217, 51sylan 469 . . . . . . 7  |-  ( (
ph  /\  v  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  / 
v )  e.  {
x  e.  NN  |  x  ||  N } )
5346adantr 463 . . . . . . 7  |-  ( (
ph  /\  v  e.  { x  e.  NN  |  x  ||  N } )  ->  A. u  e.  {
x  e.  NN  |  x  ||  N } A. k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A  e.  CC )
5413eleq1d 2471 . . . . . . . . 9  |-  ( u  =  ( N  / 
v )  ->  ( [_ u  /  j ]_ A  e.  CC  <->  [_ ( N  /  v
)  /  j ]_ A  e.  CC )
)
5512, 54raleqbidv 3018 . . . . . . . 8  |-  ( u  =  ( N  / 
v )  ->  ( A. k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A  e.  CC  <->  A. k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } [_ ( N  /  v )  / 
j ]_ A  e.  CC ) )
5655rspcv 3156 . . . . . . 7  |-  ( ( N  /  v )  e.  { x  e.  NN  |  x  ||  N }  ->  ( A. u  e.  { x  e.  NN  |  x  ||  N } A. k  e. 
{ x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  e.  CC  ->  A. k  e.  {
x  e.  NN  |  x  ||  ( N  / 
v ) } [_ ( N  /  v
)  /  j ]_ A  e.  CC )
)
5752, 53, 56sylc 59 . . . . . 6  |-  ( (
ph  /\  v  e.  { x  e.  NN  |  x  ||  N } )  ->  A. k  e.  {
x  e.  NN  |  x  ||  ( N  / 
v ) } [_ ( N  /  v
)  /  j ]_ A  e.  CC )
5857r19.21bi 2773 . . . . 5  |-  ( ( ( ph  /\  v  e.  { x  e.  NN  |  x  ||  N }
)  /\  k  e.  { x  e.  NN  |  x  ||  ( N  / 
v ) } )  ->  [_ ( N  / 
v )  /  j ]_ A  e.  CC )
5958anasss 645 . . . 4  |-  ( (
ph  /\  ( v  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } ) )  ->  [_ ( N  / 
v )  /  j ]_ A  e.  CC )
6017, 59fsumdvdsdiag 23841 . . 3  |-  ( ph  -> 
sum_ v  e.  {
x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } [_ ( N  /  v )  / 
j ]_ A  =  sum_ k  e.  { x  e.  NN  |  x  ||  N } sum_ v  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } [_ ( N  /  v
)  /  j ]_ A )
61 oveq2 6286 . . . . . . 7  |-  ( v  =  ( ( N  /  k )  /  m )  ->  ( N  /  v )  =  ( N  /  (
( N  /  k
)  /  m ) ) )
6261csbeq1d 3380 . . . . . 6  |-  ( v  =  ( ( N  /  k )  /  m )  ->  [_ ( N  /  v )  / 
j ]_ A  =  [_ ( N  /  (
( N  /  k
)  /  m ) )  /  j ]_ A )
63 fzfid 12124 . . . . . . 7  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( 1 ... ( N  /  k
) )  e.  Fin )
64 dvdsdivcl 23838 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  k )  e. 
{ x  e.  NN  |  x  ||  N }
)
6531, 64sseldi 3440 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  k )  e.  NN )
6617, 65sylan 469 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  / 
k )  e.  NN )
67 sgmss 23761 . . . . . . . 8  |-  ( ( N  /  k )  e.  NN  ->  { x  e.  NN  |  x  ||  ( N  /  k
) }  C_  (
1 ... ( N  / 
k ) ) )
6866, 67syl 17 . . . . . . 7  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  ( N  /  k
) }  C_  (
1 ... ( N  / 
k ) ) )
69 ssfi 7775 . . . . . . 7  |-  ( ( ( 1 ... ( N  /  k ) )  e.  Fin  /\  {
x  e.  NN  |  x  ||  ( N  / 
k ) }  C_  ( 1 ... ( N  /  k ) ) )  ->  { x  e.  NN  |  x  ||  ( N  /  k
) }  e.  Fin )
7063, 68, 69syl2anc 659 . . . . . 6  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  ( N  /  k
) }  e.  Fin )
71 eqid 2402 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  ( N  /  k
) }  =  {
x  e.  NN  |  x  ||  ( N  / 
k ) }
72 eqid 2402 . . . . . . . 8  |-  ( z  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  |->  ( ( N  /  k )  /  z ) )  =  ( z  e. 
{ x  e.  NN  |  x  ||  ( N  /  k ) } 
|->  ( ( N  / 
k )  /  z
) )
7371, 72dvdsflip 23839 . . . . . . 7  |-  ( ( N  /  k )  e.  NN  ->  (
z  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  |->  ( ( N  /  k )  /  z ) ) : { x  e.  NN  |  x  ||  ( N  /  k
) } -1-1-onto-> { x  e.  NN  |  x  ||  ( N  /  k ) } )
7466, 73syl 17 . . . . . 6  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( z  e. 
{ x  e.  NN  |  x  ||  ( N  /  k ) } 
|->  ( ( N  / 
k )  /  z
) ) : {
x  e.  NN  |  x  ||  ( N  / 
k ) } -1-1-onto-> { x  e.  NN  |  x  ||  ( N  /  k ) } )
75 oveq2 6286 . . . . . . . 8  |-  ( z  =  m  ->  (
( N  /  k
)  /  z )  =  ( ( N  /  k )  /  m ) )
76 ovex 6306 . . . . . . . 8  |-  ( ( N  /  k )  /  z )  e. 
_V
7775, 72, 76fvmpt3i 5937 . . . . . . 7  |-  ( m  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  ->  (
( z  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) }  |->  ( ( N  /  k
)  /  z ) ) `  m )  =  ( ( N  /  k )  /  m ) )
7877adantl 464 . . . . . 6  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( ( z  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  |->  ( ( N  /  k )  /  z ) ) `
 m )  =  ( ( N  / 
k )  /  m
) )
7917fsumdvdsdiaglem 23840 . . . . . . . 8  |-  ( ph  ->  ( ( k  e. 
{ x  e.  NN  |  x  ||  N }  /\  v  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } )  -> 
( v  e.  {
x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } ) ) )
8059ex 432 . . . . . . . 8  |-  ( ph  ->  ( ( v  e. 
{ x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } )  ->  [_ ( N  /  v
)  /  j ]_ A  e.  CC )
)
8179, 80syld 42 . . . . . . 7  |-  ( ph  ->  ( ( k  e. 
{ x  e.  NN  |  x  ||  N }  /\  v  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } )  ->  [_ ( N  /  v
)  /  j ]_ A  e.  CC )
)
8281impl 618 . . . . . 6  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  v  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  [_ ( N  / 
v )  /  j ]_ A  e.  CC )
8362, 70, 74, 78, 82fsumf1o 13694 . . . . 5  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ v  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } [_ ( N  /  v
)  /  j ]_ A  =  sum_ m  e. 
{ x  e.  NN  |  x  ||  ( N  /  k ) }
[_ ( N  / 
( ( N  / 
k )  /  m
) )  /  j ]_ A )
84 ovex 6306 . . . . . . . 8  |-  ( N  /  ( ( N  /  k )  /  m ) )  e. 
_V
8584a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( N  / 
( ( N  / 
k )  /  m
) )  e.  _V )
86 nncn 10584 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  CC )
87 nnne0 10609 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  =/=  0 )
8886, 87jca 530 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( N  e.  CC  /\  N  =/=  0 ) )
8917, 88syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  e.  CC  /\  N  =/=  0 ) )
9089ad2antrr 724 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( N  e.  CC  /\  N  =/=  0 ) )
9190simpld 457 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  N  e.  CC )
92 elrabi 3204 . . . . . . . . . . . . . . . 16  |-  ( k  e.  { x  e.  NN  |  x  ||  N }  ->  k  e.  NN )
9392adantl 464 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  k  e.  NN )
9493adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  k  e.  NN )
95 nncn 10584 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  k  e.  CC )
96 nnne0 10609 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  k  =/=  0 )
9795, 96jca 530 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  e.  CC  /\  k  =/=  0 ) )
9894, 97syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( k  e.  CC  /\  k  =/=  0 ) )
99 elrabi 3204 . . . . . . . . . . . . . . 15  |-  ( m  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  ->  m  e.  NN )
10099adantl 464 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  m  e.  NN )
101 nncn 10584 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  CC )
102 nnne0 10609 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  =/=  0 )
103101, 102jca 530 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
m  e.  CC  /\  m  =/=  0 ) )
104100, 103syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
105 divdiv1 10296 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  ( k  e.  CC  /\  k  =/=  0 )  /\  ( m  e.  CC  /\  m  =/=  0 ) )  -> 
( ( N  / 
k )  /  m
)  =  ( N  /  ( k  x.  m ) ) )
10691, 98, 104, 105syl3anc 1230 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( ( N  /  k )  /  m )  =  ( N  /  ( k  x.  m ) ) )
107106oveq2d 6294 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( N  / 
( ( N  / 
k )  /  m
) )  =  ( N  /  ( N  /  ( k  x.  m ) ) ) )
108 nnmulcl 10599 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  m  e.  NN )  ->  ( k  x.  m
)  e.  NN )
10993, 99, 108syl2an 475 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( k  x.  m )  e.  NN )
110 nncn 10584 . . . . . . . . . . . . . 14  |-  ( ( k  x.  m )  e.  NN  ->  (
k  x.  m )  e.  CC )
111 nnne0 10609 . . . . . . . . . . . . . 14  |-  ( ( k  x.  m )  e.  NN  ->  (
k  x.  m )  =/=  0 )
112110, 111jca 530 . . . . . . . . . . . . 13  |-  ( ( k  x.  m )  e.  NN  ->  (
( k  x.  m
)  e.  CC  /\  ( k  x.  m
)  =/=  0 ) )
113109, 112syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( ( k  x.  m )  e.  CC  /\  ( k  x.  m )  =/=  0 ) )
114 ddcan 10299 . . . . . . . . . . . 12  |-  ( ( ( N  e.  CC  /\  N  =/=  0 )  /\  ( ( k  x.  m )  e.  CC  /\  ( k  x.  m )  =/=  0 ) )  -> 
( N  /  ( N  /  ( k  x.  m ) ) )  =  ( k  x.  m ) )
11590, 113, 114syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( N  / 
( N  /  (
k  x.  m ) ) )  =  ( k  x.  m ) )
116107, 115eqtrd 2443 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( N  / 
( ( N  / 
k )  /  m
) )  =  ( k  x.  m ) )
117116eqeq2d 2416 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( j  =  ( N  /  (
( N  /  k
)  /  m ) )  <->  j  =  ( k  x.  m ) ) )
118117biimpa 482 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  /\  m  e.  { x  e.  NN  |  x  ||  ( N  /  k ) } )  /\  j  =  ( N  /  (
( N  /  k
)  /  m ) ) )  ->  j  =  ( k  x.  m ) )
119 fsumdvdscom.2 . . . . . . . 8  |-  ( j  =  ( k  x.  m )  ->  A  =  B )
120118, 119syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  /\  m  e.  { x  e.  NN  |  x  ||  ( N  /  k ) } )  /\  j  =  ( N  /  (
( N  /  k
)  /  m ) ) )  ->  A  =  B )
12185, 120csbied 3400 . . . . . 6  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  [_ ( N  / 
( ( N  / 
k )  /  m
) )  /  j ]_ A  =  B
)
122121sumeq2dv 13674 . . . . 5  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ m  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } [_ ( N  /  (
( N  /  k
)  /  m ) )  /  j ]_ A  =  sum_ m  e. 
{ x  e.  NN  |  x  ||  ( N  /  k ) } B )
12383, 122eqtrd 2443 . . . 4  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ v  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } [_ ( N  /  v
)  /  j ]_ A  =  sum_ m  e. 
{ x  e.  NN  |  x  ||  ( N  /  k ) } B )
124123sumeq2dv 13674 . . 3  |-  ( ph  -> 
sum_ k  e.  {
x  e.  NN  |  x  ||  N } sum_ v  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } [_ ( N  /  v )  / 
j ]_ A  =  sum_ k  e.  { x  e.  NN  |  x  ||  N } sum_ m  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } B
)
12550, 60, 1243eqtrd 2447 . 2  |-  ( ph  -> 
sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  =  sum_ k  e.  {
x  e.  NN  |  x  ||  N } sum_ m  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } B )
12610, 125syl5eq 2455 1  |-  ( ph  -> 
sum_ j  e.  {
x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  j } A  =  sum_ k  e.  { x  e.  NN  |  x  ||  N } sum_ m  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2754   {crab 2758   _Vcvv 3059   [_csb 3373    C_ wss 3414   class class class wbr 4395    |-> cmpt 4453   -1-1-onto->wf1o 5568   ` cfv 5569  (class class class)co 6278   Fincfn 7554   CCcc 9520   0cc0 9522   1c1 9523    x. cmul 9527    / cdiv 10247   NNcn 10576   ...cfz 11726   sum_csu 13657    || cdvds 14195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-sup 7935  df-oi 7969  df-card 8352  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-n0 10837  df-z 10906  df-uz 11128  df-rp 11266  df-fz 11727  df-fzo 11855  df-seq 12152  df-exp 12211  df-hash 12453  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-clim 13460  df-sum 13658  df-dvds 14196
This theorem is referenced by:  logsqvma  24108
  Copyright terms: Public domain W3C validator