MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg2 Structured version   Unicode version

Theorem fsumcvg2 13315
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumsers.1  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
fsumsers.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumsers.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumsers.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fsumcvg2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M
Allowed substitution hint:    B( k)

Proof of Theorem fsumcvg2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2613 . . . 4  |-  F/_ m if ( k  e.  A ,  B ,  0 )
2 nfv 1674 . . . . 5  |-  F/ k  m  e.  A
3 nfcsb1v 3405 . . . . 5  |-  F/_ k [_ m  /  k ]_ B
4 nfcv 2613 . . . . 5  |-  F/_ k
0
52, 3, 4nfif 3919 . . . 4  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 )
6 eleq1 2523 . . . . 5  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
7 csbeq1a 3398 . . . . 5  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
86, 7ifbieq1d 3913 . . . 4  |-  ( k  =  m  ->  if ( k  e.  A ,  B ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 ) )
91, 5, 8cbvmpt 4483 . . 3  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( m  e.  ZZ  |->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 ) )
10 fsumsers.3 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1110ralrimiva 2825 . . . 4  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
123nfel1 2628 . . . . 5  |-  F/ k
[_ m  /  k ]_ B  e.  CC
137eleq1d 2520 . . . . 5  |-  ( k  =  m  ->  ( B  e.  CC  <->  [_ m  / 
k ]_ B  e.  CC ) )
1412, 13rspc 3166 . . . 4  |-  ( m  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ m  /  k ]_ B  e.  CC )
)
1511, 14mpan9 469 . . 3  |-  ( (
ph  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  CC )
16 fsumsers.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
17 fsumsers.4 . . 3  |-  ( ph  ->  A  C_  ( M ... N ) )
189, 15, 16, 17fsumcvg 13300 . 2  |-  ( ph  ->  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq M
(  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) `  N
) )
19 eluzel2 10970 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2016, 19syl 16 . . 3  |-  ( ph  ->  M  e.  ZZ )
21 fsumsers.1 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
22 eluzelz 10974 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
23 iftrue 3898 . . . . . . . . . . 11  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  B )
2423adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  =  B )
2524, 10eqeltrd 2539 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
2625ex 434 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
0 )  e.  CC ) )
27 iffalse 3900 . . . . . . . . 9  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
28 0cn 9482 . . . . . . . . 9  |-  0  e.  CC
2927, 28syl6eqel 2547 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
3026, 29pm2.61d1 159 . . . . . . 7  |-  ( ph  ->  if ( k  e.  A ,  B , 
0 )  e.  CC )
31 eqid 2451 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
3231fvmpt2 5883 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 k )  =  if ( k  e.  A ,  B , 
0 ) )
3322, 30, 32syl2anr 478 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  =  if ( k  e.  A ,  B ,  0 ) )
3421, 33eqtr4d 2495 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k ) )
3534ralrimiva 2825 . . . 4  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k ) )
36 nffvmpt1 5800 . . . . . 6  |-  F/_ k
( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 n )
3736nfeq2 2629 . . . . 5  |-  F/ k ( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n )
38 fveq2 5792 . . . . . 6  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
39 fveq2 5792 . . . . . 6  |-  ( k  =  n  ->  (
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) )
4038, 39eqeq12d 2473 . . . . 5  |-  ( k  =  n  ->  (
( F `  k
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  <-> 
( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) ) )
4137, 40rspc 3166 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) ( F `
 k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 k )  -> 
( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) ) )
4235, 41mpan9 469 . . 3  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) )
4320, 42seqfeq 11941 . 2  |-  ( ph  ->  seq M (  +  ,  F )  =  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) )
4443fveq1d 5794 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  =  (  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) `  N
) )
4518, 43, 443brtr4d 4423 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   [_csb 3389    C_ wss 3429   ifcif 3892   class class class wbr 4393    |-> cmpt 4451   ` cfv 5519  (class class class)co 6193   CCcc 9384   0cc0 9386    + caddc 9389   ZZcz 10750   ZZ>=cuz 10965   ...cfz 11547    seqcseq 11916    ~~> cli 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-n0 10684  df-z 10751  df-uz 10966  df-rp 11096  df-fz 11548  df-seq 11917  df-exp 11976  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-clim 13077
This theorem is referenced by:  fsumsers  13316  fsumcvg3  13317  ef0lem  13475
  Copyright terms: Public domain W3C validator