Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumcube Structured version   Unicode version

Theorem fsumcube 28225
Description: Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015.)
Assertion
Ref Expression
fsumcube  |-  ( T  e.  NN0  ->  sum_ k  e.  ( 0 ... T
) ( k ^
3 )  =  ( ( ( T ^
2 )  x.  (
( T  +  1 ) ^ 2 ) )  /  4 ) )
Distinct variable group:    T, k

Proof of Theorem fsumcube
StepHypRef Expression
1 3nn0 10618 . . 3  |-  3  e.  NN0
2 fsumkthpow 28221 . . 3  |-  ( ( 3  e.  NN0  /\  T  e.  NN0 )  ->  sum_ k  e.  ( 0 ... T ) ( k ^ 3 )  =  ( ( ( ( 3  +  1 ) BernPoly  ( T  + 
1 ) )  -  ( ( 3  +  1 ) BernPoly  0 ) )  /  ( 3  +  1 ) ) )
31, 2mpan 670 . 2  |-  ( T  e.  NN0  ->  sum_ k  e.  ( 0 ... T
) ( k ^
3 )  =  ( ( ( ( 3  +  1 ) BernPoly  ( T  +  1 ) )  -  ( ( 3  +  1 ) BernPoly 
0 ) )  / 
( 3  +  1 ) ) )
4 df-4 10403 . . . . . 6  |-  4  =  ( 3  +  1 )
54oveq1i 6122 . . . . 5  |-  ( 4 BernPoly  ( T  +  1
) )  =  ( ( 3  +  1 ) BernPoly  ( T  + 
1 ) )
64oveq1i 6122 . . . . 5  |-  ( 4 BernPoly 
0 )  =  ( ( 3  +  1 ) BernPoly  0 )
75, 6oveq12i 6124 . . . 4  |-  ( ( 4 BernPoly  ( T  + 
1 ) )  -  ( 4 BernPoly  0 ) )  =  ( ( ( 3  +  1 ) BernPoly  ( T  +  1
) )  -  (
( 3  +  1 ) BernPoly  0 ) )
87, 4oveq12i 6124 . . 3  |-  ( ( ( 4 BernPoly  ( T  +  1 ) )  -  ( 4 BernPoly  0
) )  /  4
)  =  ( ( ( ( 3  +  1 ) BernPoly  ( T  +  1 ) )  -  ( ( 3  +  1 ) BernPoly  0
) )  /  (
3  +  1 ) )
9 nn0cn 10610 . . . . . . . 8  |-  ( T  e.  NN0  ->  T  e.  CC )
10 peano2cn 9562 . . . . . . . 8  |-  ( T  e.  CC  ->  ( T  +  1 )  e.  CC )
119, 10syl 16 . . . . . . 7  |-  ( T  e.  NN0  ->  ( T  +  1 )  e.  CC )
12 bpoly4 28224 . . . . . . 7  |-  ( ( T  +  1 )  e.  CC  ->  (
4 BernPoly  ( T  +  1 ) )  =  ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )
1311, 12syl 16 . . . . . 6  |-  ( T  e.  NN0  ->  ( 4 BernPoly  ( T  +  1
) )  =  ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )
14 4nn 10502 . . . . . . . . . . . . . 14  |-  4  e.  NN
15 0exp 11920 . . . . . . . . . . . . . 14  |-  ( 4  e.  NN  ->  (
0 ^ 4 )  =  0 )
1614, 15ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0 ^ 4 )  =  0
17 3nn 10501 . . . . . . . . . . . . . . . 16  |-  3  e.  NN
18 0exp 11920 . . . . . . . . . . . . . . . 16  |-  ( 3  e.  NN  ->  (
0 ^ 3 )  =  0 )
1917, 18ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 0 ^ 3 )  =  0
2019oveq2i 6123 . . . . . . . . . . . . . 14  |-  ( 2  x.  ( 0 ^ 3 ) )  =  ( 2  x.  0 )
21 2t0e0 10498 . . . . . . . . . . . . . 14  |-  ( 2  x.  0 )  =  0
2220, 21eqtri 2463 . . . . . . . . . . . . 13  |-  ( 2  x.  ( 0 ^ 3 ) )  =  0
2316, 22oveq12i 6124 . . . . . . . . . . . 12  |-  ( ( 0 ^ 4 )  -  ( 2  x.  ( 0 ^ 3 ) ) )  =  ( 0  -  0 )
24 0m0e0 10452 . . . . . . . . . . . 12  |-  ( 0  -  0 )  =  0
2523, 24eqtri 2463 . . . . . . . . . . 11  |-  ( ( 0 ^ 4 )  -  ( 2  x.  ( 0 ^ 3 ) ) )  =  0
26 sq0 11978 . . . . . . . . . . 11  |-  ( 0 ^ 2 )  =  0
2725, 26oveq12i 6124 . . . . . . . . . 10  |-  ( ( ( 0 ^ 4 )  -  ( 2  x.  ( 0 ^ 3 ) ) )  +  ( 0 ^ 2 ) )  =  ( 0  +  0 )
28 00id 9565 . . . . . . . . . 10  |-  ( 0  +  0 )  =  0
2927, 28eqtri 2463 . . . . . . . . 9  |-  ( ( ( 0 ^ 4 )  -  ( 2  x.  ( 0 ^ 3 ) ) )  +  ( 0 ^ 2 ) )  =  0
3029oveq1i 6122 . . . . . . . 8  |-  ( ( ( ( 0 ^ 4 )  -  (
2  x.  ( 0 ^ 3 ) ) )  +  ( 0 ^ 2 ) )  -  ( 1  / ; 3 0 ) )  =  ( 0  -  ( 1  / ; 3 0 ) )
31 0cn 9399 . . . . . . . . 9  |-  0  e.  CC
32 bpoly4 28224 . . . . . . . . 9  |-  ( 0  e.  CC  ->  (
4 BernPoly  0 )  =  ( ( ( ( 0 ^ 4 )  -  ( 2  x.  (
0 ^ 3 ) ) )  +  ( 0 ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )
3331, 32ax-mp 5 . . . . . . . 8  |-  ( 4 BernPoly 
0 )  =  ( ( ( ( 0 ^ 4 )  -  ( 2  x.  (
0 ^ 3 ) ) )  +  ( 0 ^ 2 ) )  -  ( 1  / ; 3 0 ) )
34 df-neg 9619 . . . . . . . 8  |-  -u (
1  / ; 3 0 )  =  ( 0  -  (
1  / ; 3 0 ) )
3530, 33, 343eqtr4i 2473 . . . . . . 7  |-  ( 4 BernPoly 
0 )  =  -u ( 1  / ; 3 0 )
3635a1i 11 . . . . . 6  |-  ( T  e.  NN0  ->  ( 4 BernPoly 
0 )  =  -u ( 1  / ; 3 0 ) )
3713, 36oveq12d 6130 . . . . 5  |-  ( T  e.  NN0  ->  ( ( 4 BernPoly  ( T  + 
1 ) )  -  ( 4 BernPoly  0 ) )  =  ( ( ( ( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  -  -u (
1  / ; 3 0 ) ) )
38 4nn0 10619 . . . . . . . . . . . 12  |-  4  e.  NN0
39 expcl 11904 . . . . . . . . . . . 12  |-  ( ( ( T  +  1 )  e.  CC  /\  4  e.  NN0 )  -> 
( ( T  + 
1 ) ^ 4 )  e.  CC )
4038, 39mpan2 671 . . . . . . . . . . 11  |-  ( ( T  +  1 )  e.  CC  ->  (
( T  +  1 ) ^ 4 )  e.  CC )
41 2cn 10413 . . . . . . . . . . . 12  |-  2  e.  CC
42 expcl 11904 . . . . . . . . . . . . 13  |-  ( ( ( T  +  1 )  e.  CC  /\  3  e.  NN0 )  -> 
( ( T  + 
1 ) ^ 3 )  e.  CC )
431, 42mpan2 671 . . . . . . . . . . . 12  |-  ( ( T  +  1 )  e.  CC  ->  (
( T  +  1 ) ^ 3 )  e.  CC )
44 mulcl 9387 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  ( ( T  + 
1 ) ^ 3 )  e.  CC )  ->  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) )  e.  CC )
4541, 43, 44sylancr 663 . . . . . . . . . . 11  |-  ( ( T  +  1 )  e.  CC  ->  (
2  x.  ( ( T  +  1 ) ^ 3 ) )  e.  CC )
4640, 45subcld 9740 . . . . . . . . . 10  |-  ( ( T  +  1 )  e.  CC  ->  (
( ( T  + 
1 ) ^ 4 )  -  ( 2  x.  ( ( T  +  1 ) ^
3 ) ) )  e.  CC )
47 sqcl 11949 . . . . . . . . . 10  |-  ( ( T  +  1 )  e.  CC  ->  (
( T  +  1 ) ^ 2 )  e.  CC )
4846, 47addcld 9426 . . . . . . . . 9  |-  ( ( T  +  1 )  e.  CC  ->  (
( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  e.  CC )
4910, 48syl 16 . . . . . . . 8  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  e.  CC )
509, 49syl 16 . . . . . . 7  |-  ( T  e.  NN0  ->  ( ( ( ( T  + 
1 ) ^ 4 )  -  ( 2  x.  ( ( T  +  1 ) ^
3 ) ) )  +  ( ( T  +  1 ) ^
2 ) )  e.  CC )
51 0nn0 10615 . . . . . . . . . 10  |-  0  e.  NN0
521, 51deccl 10790 . . . . . . . . 9  |- ; 3 0  e.  NN0
5352nn0cni 10612 . . . . . . . 8  |- ; 3 0  e.  CC
5452nn0rei 10611 . . . . . . . . 9  |- ; 3 0  e.  RR
55 10pos 10445 . . . . . . . . . 10  |-  0  <  10
5617, 51, 51, 55declti 10801 . . . . . . . . 9  |-  0  < ; 3
0
5754, 56gt0ne0ii 9897 . . . . . . . 8  |- ; 3 0  =/=  0
5853, 57reccli 10082 . . . . . . 7  |-  ( 1  / ; 3 0 )  e.  CC
59 subcl 9630 . . . . . . 7  |-  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  e.  CC  /\  ( 1  / ; 3 0 )  e.  CC )  ->  (
( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  e.  CC )
6050, 58, 59sylancl 662 . . . . . 6  |-  ( T  e.  NN0  ->  ( ( ( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  e.  CC )
61 subneg 9679 . . . . . 6  |-  ( ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  e.  CC  /\  (
1  / ; 3 0 )  e.  CC )  ->  (
( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  -  -u ( 1  / ; 3 0 ) )  =  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) ) )
6260, 58, 61sylancl 662 . . . . 5  |-  ( T  e.  NN0  ->  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  -  -u ( 1  / ; 3 0 ) )  =  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) ) )
63 npcan 9640 . . . . . . . 8  |-  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  e.  CC  /\  ( 1  / ; 3 0 )  e.  CC )  ->  (
( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) )  =  ( ( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) ) )
6449, 58, 63sylancl 662 . . . . . . 7  |-  ( T  e.  CC  ->  (
( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) )  =  ( ( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) ) )
659, 64syl 16 . . . . . 6  |-  ( T  e.  NN0  ->  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) )  =  ( ( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) ) )
66 2p2e4 10460 . . . . . . . . . . 11  |-  ( 2  +  2 )  =  4
6766eqcomi 2447 . . . . . . . . . 10  |-  4  =  ( 2  +  2 )
6867oveq2i 6123 . . . . . . . . 9  |-  ( ( T  +  1 ) ^ 4 )  =  ( ( T  + 
1 ) ^ (
2  +  2 ) )
69 df-3 10402 . . . . . . . . . . 11  |-  3  =  ( 2  +  1 )
7069oveq2i 6123 . . . . . . . . . 10  |-  ( ( T  +  1 ) ^ 3 )  =  ( ( T  + 
1 ) ^ (
2  +  1 ) )
7170oveq2i 6123 . . . . . . . . 9  |-  ( 2  x.  ( ( T  +  1 ) ^
3 ) )  =  ( 2  x.  (
( T  +  1 ) ^ ( 2  +  1 ) ) )
7268, 71oveq12i 6124 . . . . . . . 8  |-  ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  =  ( ( ( T  +  1 ) ^
( 2  +  2 ) )  -  (
2  x.  ( ( T  +  1 ) ^ ( 2  +  1 ) ) ) )
7372oveq1i 6122 . . . . . . 7  |-  ( ( ( ( T  + 
1 ) ^ 4 )  -  ( 2  x.  ( ( T  +  1 ) ^
3 ) ) )  +  ( ( T  +  1 ) ^
2 ) )  =  ( ( ( ( T  +  1 ) ^ ( 2  +  2 ) )  -  ( 2  x.  (
( T  +  1 ) ^ ( 2  +  1 ) ) ) )  +  ( ( T  +  1 ) ^ 2 ) )
74 2nn0 10617 . . . . . . . . . . . . 13  |-  2  e.  NN0
75 expadd 11927 . . . . . . . . . . . . 13  |-  ( ( ( T  +  1 )  e.  CC  /\  2  e.  NN0  /\  2  e.  NN0 )  ->  (
( T  +  1 ) ^ ( 2  +  2 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
7674, 74, 75mp3an23 1306 . . . . . . . . . . . 12  |-  ( ( T  +  1 )  e.  CC  ->  (
( T  +  1 ) ^ ( 2  +  2 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
77 1nn0 10616 . . . . . . . . . . . . . 14  |-  1  e.  NN0
78 expadd 11927 . . . . . . . . . . . . . 14  |-  ( ( ( T  +  1 )  e.  CC  /\  2  e.  NN0  /\  1  e.  NN0 )  ->  (
( T  +  1 ) ^ ( 2  +  1 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 1 ) ) )
7974, 77, 78mp3an23 1306 . . . . . . . . . . . . 13  |-  ( ( T  +  1 )  e.  CC  ->  (
( T  +  1 ) ^ ( 2  +  1 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 1 ) ) )
8079oveq2d 6128 . . . . . . . . . . . 12  |-  ( ( T  +  1 )  e.  CC  ->  (
2  x.  ( ( T  +  1 ) ^ ( 2  +  1 ) ) )  =  ( 2  x.  ( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 1 ) ) ) )
8176, 80oveq12d 6130 . . . . . . . . . . 11  |-  ( ( T  +  1 )  e.  CC  ->  (
( ( T  + 
1 ) ^ (
2  +  2 ) )  -  ( 2  x.  ( ( T  +  1 ) ^
( 2  +  1 ) ) ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
2 ) )  -  ( 2  x.  (
( ( T  + 
1 ) ^ 2 )  x.  ( ( T  +  1 ) ^ 1 ) ) ) ) )
8210, 81syl 16 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ (
2  +  2 ) )  -  ( 2  x.  ( ( T  +  1 ) ^
( 2  +  1 ) ) ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
2 ) )  -  ( 2  x.  (
( ( T  + 
1 ) ^ 2 )  x.  ( ( T  +  1 ) ^ 1 ) ) ) ) )
8310sqcld 12027 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 2 )  e.  CC )
8483mulid1d 9424 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  1 )  =  ( ( T  +  1 ) ^
2 ) )
8584eqcomd 2448 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 2 )  =  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) )
8682, 85oveq12d 6130 . . . . . . . . 9  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
( 2  +  2 ) )  -  (
2  x.  ( ( T  +  1 ) ^ ( 2  +  1 ) ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  =  ( ( ( ( ( T  + 
1 ) ^ 2 )  x.  ( ( T  +  1 ) ^ 2 ) )  -  ( 2  x.  ( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 1 ) ) ) )  +  ( ( ( T  +  1 ) ^
2 )  x.  1 ) ) )
8710exp1d 12024 . . . . . . . . . . . . . . . 16  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 1 )  =  ( T  + 
1 ) )
8887oveq2d 6128 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  (
2  x.  ( ( T  +  1 ) ^ 1 ) )  =  ( 2  x.  ( T  +  1 ) ) )
8988oveq2d 6128 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  ( 2  x.  ( ( T  +  1 ) ^
1 ) ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( 2  x.  ( T  +  1 ) ) ) )
9089oveq2d 6128 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 2 ) )  -  ( ( ( T  +  1 ) ^ 2 )  x.  ( 2  x.  ( ( T  + 
1 ) ^ 1 ) ) ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
2 ) )  -  ( ( ( T  +  1 ) ^
2 )  x.  (
2  x.  ( T  +  1 ) ) ) ) )
9187, 10eqeltrd 2517 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 1 )  e.  CC )
92 mul12 9556 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( ( T  + 
1 ) ^ 1 )  e.  CC )  ->  ( 2  x.  ( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 1 ) ) )  =  ( ( ( T  + 
1 ) ^ 2 )  x.  ( 2  x.  ( ( T  +  1 ) ^
1 ) ) ) )
9341, 92mp3an1 1301 . . . . . . . . . . . . . . 15  |-  ( ( ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( ( T  + 
1 ) ^ 1 )  e.  CC )  ->  ( 2  x.  ( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 1 ) ) )  =  ( ( ( T  + 
1 ) ^ 2 )  x.  ( 2  x.  ( ( T  +  1 ) ^
1 ) ) ) )
9483, 91, 93syl2anc 661 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
1 ) ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( 2  x.  (
( T  +  1 ) ^ 1 ) ) ) )
9594oveq2d 6128 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 2 ) )  -  ( 2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 1 ) ) ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
2 ) )  -  ( ( ( T  +  1 ) ^
2 )  x.  (
2  x.  ( ( T  +  1 ) ^ 1 ) ) ) ) )
96 mulcl 9387 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  ( T  +  1
)  e.  CC )  ->  ( 2  x.  ( T  +  1 ) )  e.  CC )
9741, 10, 96sylancr 663 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
2  x.  ( T  +  1 ) )  e.  CC )
9883, 83, 97subdid 9821 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
2 ) )  -  ( ( ( T  +  1 ) ^
2 )  x.  (
2  x.  ( T  +  1 ) ) ) ) )
9990, 95, 983eqtr4d 2485 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 2 ) )  -  ( 2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 1 ) ) ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) ) ) )
10099oveq1d 6127 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) )  -  (
2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
1 ) ) ) )  +  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) ) )  +  ( ( ( T  +  1 ) ^
2 )  x.  1 ) ) )
10183, 97subcld 9740 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  -  ( 2  x.  ( T  + 
1 ) ) )  e.  CC )
102 ax-1cn 9361 . . . . . . . . . . . . 13  |-  1  e.  CC
103 adddi 9392 . . . . . . . . . . . . 13  |-  ( ( ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( T  +  1 ) ^
2 )  x.  (
( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) )  +  1 ) )  =  ( ( ( ( T  + 
1 ) ^ 2 )  x.  ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) ) )  +  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) ) )
104102, 103mp3an3 1303 . . . . . . . . . . . 12  |-  ( ( ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) )  e.  CC )  ->  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) )  +  1 ) )  =  ( ( ( ( T  +  1 ) ^
2 )  x.  (
( ( T  + 
1 ) ^ 2 )  -  ( 2  x.  ( T  + 
1 ) ) ) )  +  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) ) )
10583, 101, 104syl2anc 661 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  ( ( ( ( T  + 
1 ) ^ 2 )  -  ( 2  x.  ( T  + 
1 ) ) )  +  1 ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) ) )  +  ( ( ( T  +  1 ) ^
2 )  x.  1 ) ) )
106100, 105eqtr4d 2478 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) )  -  (
2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
1 ) ) ) )  +  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) )  +  1 ) ) )
107 adddi 9392 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  T  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( T  +  1 ) )  =  ( ( 2  x.  T )  +  ( 2  x.  1 ) ) )
10841, 102, 107mp3an13 1305 . . . . . . . . . . . . . . . 16  |-  ( T  e.  CC  ->  (
2  x.  ( T  +  1 ) )  =  ( ( 2  x.  T )  +  ( 2  x.  1 ) ) )
10941mulid1i 9409 . . . . . . . . . . . . . . . . 17  |-  ( 2  x.  1 )  =  2
110109oveq2i 6123 . . . . . . . . . . . . . . . 16  |-  ( ( 2  x.  T )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  T )  +  2 )
111108, 110syl6eq 2491 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  (
2  x.  ( T  +  1 ) )  =  ( ( 2  x.  T )  +  2 ) )
112111oveq1d 6127 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( 2  x.  ( T  +  1 ) )  -  1 )  =  ( ( ( 2  x.  T )  +  2 )  - 
1 ) )
113 mulcl 9387 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  T  e.  CC )  ->  ( 2  x.  T
)  e.  CC )
11441, 113mpan 670 . . . . . . . . . . . . . . . 16  |-  ( T  e.  CC  ->  (
2  x.  T )  e.  CC )
115 addsubass 9641 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  T
)  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( ( 2  x.  T )  +  2 )  -  1 )  =  ( ( 2  x.  T )  +  ( 2  -  1 ) ) )
11641, 102, 115mp3an23 1306 . . . . . . . . . . . . . . . 16  |-  ( ( 2  x.  T )  e.  CC  ->  (
( ( 2  x.  T )  +  2 )  -  1 )  =  ( ( 2  x.  T )  +  ( 2  -  1 ) ) )
117114, 116syl 16 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  (
( ( 2  x.  T )  +  2 )  -  1 )  =  ( ( 2  x.  T )  +  ( 2  -  1 ) ) )
118 2m1e1 10457 . . . . . . . . . . . . . . . 16  |-  ( 2  -  1 )  =  1
119118oveq2i 6123 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  T )  +  ( 2  -  1 ) )  =  ( ( 2  x.  T )  +  1 )
120117, 119syl6eq 2491 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( ( 2  x.  T )  +  2 )  -  1 )  =  ( ( 2  x.  T )  +  1 ) )
121112, 120eqtrd 2475 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( 2  x.  ( T  +  1 ) )  -  1 )  =  ( ( 2  x.  T )  +  1 ) )
122121oveq2d 6128 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  -  ( ( 2  x.  ( T  +  1 ) )  -  1 ) )  =  ( ( ( T  +  1 ) ^ 2 )  -  ( ( 2  x.  T )  +  1 ) ) )
123 subsub 9660 . . . . . . . . . . . . . 14  |-  ( ( ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( 2  x.  ( T  +  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( T  +  1 ) ^
2 )  -  (
( 2  x.  ( T  +  1 ) )  -  1 ) )  =  ( ( ( ( T  + 
1 ) ^ 2 )  -  ( 2  x.  ( T  + 
1 ) ) )  +  1 ) )
124102, 123mp3an3 1303 . . . . . . . . . . . . 13  |-  ( ( ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( 2  x.  ( T  +  1 ) )  e.  CC )  ->  ( ( ( T  +  1 ) ^ 2 )  -  ( ( 2  x.  ( T  +  1 ) )  -  1 ) )  =  ( ( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) )  +  1 ) )
12583, 97, 124syl2anc 661 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  -  ( ( 2  x.  ( T  +  1 ) )  -  1 ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) )  +  1 ) )
126 binom21 12003 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 2 )  =  ( ( ( T ^ 2 )  +  ( 2  x.  T ) )  +  1 ) )
127 sqcl 11949 . . . . . . . . . . . . . . . 16  |-  ( T  e.  CC  ->  ( T ^ 2 )  e.  CC )
128 addass 9390 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T ^ 2 )  e.  CC  /\  ( 2  x.  T
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( T ^ 2 )  +  ( 2  x.  T
) )  +  1 )  =  ( ( T ^ 2 )  +  ( ( 2  x.  T )  +  1 ) ) )
129102, 128mp3an3 1303 . . . . . . . . . . . . . . . 16  |-  ( ( ( T ^ 2 )  e.  CC  /\  ( 2  x.  T
)  e.  CC )  ->  ( ( ( T ^ 2 )  +  ( 2  x.  T ) )  +  1 )  =  ( ( T ^ 2 )  +  ( ( 2  x.  T )  +  1 ) ) )
130127, 114, 129syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  (
( ( T ^
2 )  +  ( 2  x.  T ) )  +  1 )  =  ( ( T ^ 2 )  +  ( ( 2  x.  T )  +  1 ) ) )
131126, 130eqtrd 2475 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 2 )  =  ( ( T ^ 2 )  +  ( ( 2  x.  T )  +  1 ) ) )
132131oveq1d 6127 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  -  ( ( 2  x.  T )  +  1 ) )  =  ( ( ( T ^ 2 )  +  ( ( 2  x.  T )  +  1 ) )  -  ( ( 2  x.  T )  +  1 ) ) )
133 peano2cn 9562 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  T )  e.  CC  ->  (
( 2  x.  T
)  +  1 )  e.  CC )
134114, 133syl 16 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( 2  x.  T
)  +  1 )  e.  CC )
135127, 134pncand 9741 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( ( T ^
2 )  +  ( ( 2  x.  T
)  +  1 ) )  -  ( ( 2  x.  T )  +  1 ) )  =  ( T ^
2 ) )
136132, 135eqtrd 2475 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  -  ( ( 2  x.  T )  +  1 ) )  =  ( T ^
2 ) )
137122, 125, 1363eqtr3d 2483 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) )  +  1 )  =  ( T ^
2 ) )
138137oveq2d 6128 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  ( ( ( ( T  + 
1 ) ^ 2 )  -  ( 2  x.  ( T  + 
1 ) ) )  +  1 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( T ^ 2 ) ) )
13983, 127mulcomd 9428 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  ( T ^ 2 ) )  =  ( ( T ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
140106, 138, 1393eqtrd 2479 . . . . . . . . 9  |-  ( T  e.  CC  ->  (
( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) )  -  (
2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
1 ) ) ) )  +  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) )  =  ( ( T ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
14186, 140eqtrd 2475 . . . . . . . 8  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
( 2  +  2 ) )  -  (
2  x.  ( ( T  +  1 ) ^ ( 2  +  1 ) ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  =  ( ( T ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
1429, 141syl 16 . . . . . . 7  |-  ( T  e.  NN0  ->  ( ( ( ( T  + 
1 ) ^ (
2  +  2 ) )  -  ( 2  x.  ( ( T  +  1 ) ^
( 2  +  1 ) ) ) )  +  ( ( T  +  1 ) ^
2 ) )  =  ( ( T ^
2 )  x.  (
( T  +  1 ) ^ 2 ) ) )
14373, 142syl5eq 2487 . . . . . 6  |-  ( T  e.  NN0  ->  ( ( ( ( T  + 
1 ) ^ 4 )  -  ( 2  x.  ( ( T  +  1 ) ^
3 ) ) )  +  ( ( T  +  1 ) ^
2 ) )  =  ( ( T ^
2 )  x.  (
( T  +  1 ) ^ 2 ) ) )
14465, 143eqtrd 2475 . . . . 5  |-  ( T  e.  NN0  ->  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) )  =  ( ( T ^ 2 )  x.  ( ( T  +  1 ) ^ 2 ) ) )
14537, 62, 1443eqtrd 2479 . . . 4  |-  ( T  e.  NN0  ->  ( ( 4 BernPoly  ( T  + 
1 ) )  -  ( 4 BernPoly  0 ) )  =  ( ( T ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
146145oveq1d 6127 . . 3  |-  ( T  e.  NN0  ->  ( ( ( 4 BernPoly  ( T  +  1 ) )  -  ( 4 BernPoly  0
) )  /  4
)  =  ( ( ( T ^ 2 )  x.  ( ( T  +  1 ) ^ 2 ) )  /  4 ) )
1478, 146syl5eqr 2489 . 2  |-  ( T  e.  NN0  ->  ( ( ( ( 3  +  1 ) BernPoly  ( T  +  1 ) )  -  ( ( 3  +  1 ) BernPoly  0
) )  /  (
3  +  1 ) )  =  ( ( ( T ^ 2 )  x.  ( ( T  +  1 ) ^ 2 ) )  /  4 ) )
1483, 147eqtrd 2475 1  |-  ( T  e.  NN0  ->  sum_ k  e.  ( 0 ... T
) ( k ^
3 )  =  ( ( ( T ^
2 )  x.  (
( T  +  1 ) ^ 2 ) )  /  4 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756  (class class class)co 6112   CCcc 9301   0cc0 9303   1c1 9304    + caddc 9306    x. cmul 9308    - cmin 9616   -ucneg 9617    / cdiv 10014   NNcn 10343   2c2 10392   3c3 10393   4c4 10394   NN0cn0 10600  ;cdc 10776   ...cfz 11458   ^cexp 11886   sum_csu 13184   BernPoly cbp 28211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-oi 7745  df-card 8130  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-rp 11013  df-fz 11459  df-fzo 11570  df-seq 11828  df-exp 11887  df-fac 12073  df-bc 12100  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-clim 12987  df-sum 13185  df-pred 27647  df-wrecs 27739  df-bpoly 28212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator