MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumabs Structured version   Unicode version

Theorem fsumabs 13589
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumabs.1  |-  ( ph  ->  A  e.  Fin )
fsumabs.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsumabs  |-  ( ph  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsumabs
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3505 . 2  |-  A  C_  A
2 fsumabs.1 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3507 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 sumeq1 13485 . . . . . . . 8  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
54fveq2d 5856 . . . . . . 7  |-  ( w  =  (/)  ->  ( abs `  sum_ k  e.  w  B )  =  ( abs `  sum_ k  e.  (/)  B ) )
6 sumeq1 13485 . . . . . . 7  |-  ( w  =  (/)  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  (/)  ( abs `  B ) )
75, 6breq12d 4446 . . . . . 6  |-  ( w  =  (/)  ->  ( ( abs `  sum_ k  e.  w  B )  <_ 
sum_ k  e.  w  ( abs `  B )  <-> 
( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) )
83, 7imbi12d 320 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_ 
sum_ k  e.  w  ( abs `  B ) )  <->  ( (/)  C_  A  ->  ( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) ) )
98imbi2d 316 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) ) )  <->  ( ph  ->  ( (/)  C_  A  -> 
( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) ) ) )
10 sseq1 3507 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
11 sumeq1 13485 . . . . . . . 8  |-  ( w  =  x  ->  sum_ k  e.  w  B  =  sum_ k  e.  x  B )
1211fveq2d 5856 . . . . . . 7  |-  ( w  =  x  ->  ( abs `  sum_ k  e.  w  B )  =  ( abs `  sum_ k  e.  x  B )
)
13 sumeq1 13485 . . . . . . 7  |-  ( w  =  x  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  x  ( abs `  B ) )
1412, 13breq12d 4446 . . . . . 6  |-  ( w  =  x  ->  (
( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
)  <->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) ) )
1510, 14imbi12d 320 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) )  <->  ( x  C_  A  ->  ( abs ` 
sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B ) ) ) )
1615imbi2d 316 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B ) ) )  <-> 
( ph  ->  ( x 
C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B ) ) ) ) )
17 sseq1 3507 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
18 sumeq1 13485 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( x  u.  {
y } ) B )
1918fveq2d 5856 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  ( abs `  sum_ k  e.  w  B
)  =  ( abs `  sum_ k  e.  ( x  u.  { y } ) B ) )
20 sumeq1 13485 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) )
2119, 20breq12d 4446 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B )  <->  ( abs ` 
sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
2217, 21imbi12d 320 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B ) )  <->  ( (
x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) )
2322imbi2d 316 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) ) )  <->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) ) ) )
24 sseq1 3507 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
25 sumeq1 13485 . . . . . . . 8  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
2625fveq2d 5856 . . . . . . 7  |-  ( w  =  A  ->  ( abs `  sum_ k  e.  w  B )  =  ( abs `  sum_ k  e.  A  B )
)
27 sumeq1 13485 . . . . . . 7  |-  ( w  =  A  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  A  ( abs `  B ) )
2826, 27breq12d 4446 . . . . . 6  |-  ( w  =  A  ->  (
( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
)  <->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) ) )
2924, 28imbi12d 320 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) )  <->  ( A  C_  A  ->  ( abs ` 
sum_ k  e.  A  B )  <_  sum_ k  e.  A  ( abs `  B ) ) ) )
3029imbi2d 316 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B ) ) )  <-> 
( ph  ->  ( A 
C_  A  ->  ( abs `  sum_ k  e.  A  B )  <_  sum_ k  e.  A  ( abs `  B ) ) ) ) )
31 0le0 10626 . . . . . 6  |-  0  <_  0
32 sum0 13517 . . . . . . . 8  |-  sum_ k  e.  (/)  B  =  0
3332fveq2i 5855 . . . . . . 7  |-  ( abs `  sum_ k  e.  (/)  B )  =  ( abs `  0 )
34 abs0 13092 . . . . . . 7  |-  ( abs `  0 )  =  0
3533, 34eqtri 2470 . . . . . 6  |-  ( abs `  sum_ k  e.  (/)  B )  =  0
36 sum0 13517 . . . . . 6  |-  sum_ k  e.  (/)  ( abs `  B
)  =  0
3731, 35, 363brtr4i 4461 . . . . 5  |-  ( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B
)
3837a1ii 27 . . . 4  |-  ( ph  ->  ( (/)  C_  A  -> 
( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) )
39 ssun1 3649 . . . . . . . . . 10  |-  x  C_  ( x  u.  { y } )
40 sstr 3494 . . . . . . . . . 10  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
4139, 40mpan 670 . . . . . . . . 9  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4241imim1i 58 . . . . . . . 8  |-  ( ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_ 
sum_ k  e.  x  ( abs `  B ) )  ->  ( (
x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) ) )
43 simpll 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ph )
4443, 2syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  A  e.  Fin )
45 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  C_  A
)
4645unssad 3663 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  x  C_  A )
47 ssfi 7738 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  Fin  /\  x  C_  A )  ->  x  e.  Fin )
4844, 46, 47syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  x  e.  Fin )
4946sselda 3486 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  x )  ->  k  e.  A )
50 fsumabs.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
5143, 50sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  A )  ->  B  e.  CC )
5249, 51syldan 470 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  x )  ->  B  e.  CC )
5348, 52fsumcl 13529 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  x  B  e.  CC )
5453abscld 13241 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  x  B )  e.  RR )
5552abscld 13241 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  x )  ->  ( abs `  B
)  e.  RR )
5648, 55fsumrecl 13530 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  x  ( abs `  B )  e.  RR )
5745unssbd 3664 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  { y }  C_  A )
58 vex 3096 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
5958snss 4135 . . . . . . . . . . . . . . . 16  |-  ( y  e.  A  <->  { y }  C_  A )
6057, 59sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  y  e.  A )
6150ralrimiva 2855 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
6243, 61syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  A. k  e.  A  B  e.  CC )
63 nfcsb1v 3433 . . . . . . . . . . . . . . . . 17  |-  F/_ k [_ y  /  k ]_ B
6463nfel1 2619 . . . . . . . . . . . . . . . 16  |-  F/ k
[_ y  /  k ]_ B  e.  CC
65 csbeq1a 3426 . . . . . . . . . . . . . . . . 17  |-  ( k  =  y  ->  B  =  [_ y  /  k ]_ B )
6665eleq1d 2510 . . . . . . . . . . . . . . . 16  |-  ( k  =  y  ->  ( B  e.  CC  <->  [_ y  / 
k ]_ B  e.  CC ) )
6764, 66rspc 3188 . . . . . . . . . . . . . . 15  |-  ( y  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ y  /  k ]_ B  e.  CC )
)
6860, 62, 67sylc 60 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  [_ y  /  k ]_ B  e.  CC )
6968abscld 13241 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  [_ y  / 
k ]_ B )  e.  RR )
7054, 56, 69leadd1d 10147 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
)  <->  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  <_  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) ) )
71 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  -.  y  e.  x )
72 disjsn 4071 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  { y } )  =  (/)  <->  -.  y  e.  x )
7371, 72sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  i^i  { y } )  =  (/) )
74 eqidd 2442 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  =  ( x  u.  { y } ) )
75 ssfi 7738 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  Fin  /\  ( x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } )  e.  Fin )
7644, 45, 75syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  e.  Fin )
7745sselda 3486 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  k  e.  A )
7877, 51syldan 470 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  B  e.  CC )
7978abscld 13241 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  ( abs `  B )  e.  RR )
8079recnd 9620 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  ( abs `  B )  e.  CC )
8173, 74, 76, 80fsumsplit 13536 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  =  ( sum_ k  e.  x  ( abs `  B )  +  sum_ k  e.  { y }  ( abs `  B
) ) )
82 csbfv2g 5889 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  _V  ->  [_ y  /  k ]_ ( abs `  B )  =  ( abs `  [_ y  /  k ]_ B
) )
8358, 82ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  [_ y  /  k ]_ ( abs `  B )  =  ( abs `  [_ y  /  k ]_ B
)
8469recnd 9620 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  [_ y  / 
k ]_ B )  e.  CC )
8583, 84syl5eqel 2533 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  [_ y  /  k ]_ ( abs `  B )  e.  CC )
86 sumsns 13539 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  _V  /\  [_ y  /  k ]_ ( abs `  B )  e.  CC )  ->  sum_ k  e.  { y }  ( abs `  B
)  =  [_ y  /  k ]_ ( abs `  B ) )
8758, 85, 86sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  { y }  ( abs `  B )  = 
[_ y  /  k ]_ ( abs `  B
) )
8887, 83syl6eq 2498 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  { y }  ( abs `  B )  =  ( abs `  [_ y  /  k ]_ B
) )
8988oveq2d 6293 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( sum_ k  e.  x  ( abs `  B )  +  sum_ k  e.  {
y }  ( abs `  B ) )  =  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) )
9081, 89eqtrd 2482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  =  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) )
9190breq2d 4445 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
)  <->  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  <_  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) ) )
9270, 91bitr4d 256 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
)  <->  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) )
9373, 74, 76, 78fsumsplit 13536 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) B  =  ( sum_ k  e.  x  B  +  sum_ k  e.  { y } B ) )
94 sumsns 13539 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  A  /\  [_ y  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
y } B  = 
[_ y  /  k ]_ B )
9560, 68, 94syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  { y } B  =  [_ y  /  k ]_ B )
9695oveq2d 6293 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( sum_ k  e.  x  B  +  sum_ k  e.  {
y } B )  =  ( sum_ k  e.  x  B  +  [_ y  /  k ]_ B ) )
9793, 96eqtrd 2482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) B  =  ( sum_ k  e.  x  B  +  [_ y  /  k ]_ B ) )
9897fveq2d 5856 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  =  ( abs `  ( sum_ k  e.  x  B  +  [_ y  / 
k ]_ B ) ) )
9953, 68abstrid 13261 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  ( sum_ k  e.  x  B  +  [_ y  /  k ]_ B ) )  <_ 
( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) ) )
10098, 99eqbrtrd 4453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) ) )
10176, 78fsumcl 13529 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) B  e.  CC )
102101abscld 13241 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  e.  RR )
10354, 69readdcld 9621 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  e.  RR )
10476, 79fsumrecl 13530 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  e.  RR )
105 letr 9676 . . . . . . . . . . . . 13  |-  ( ( ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  e.  RR  /\  ( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  e.  RR  /\  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  e.  RR )  -> 
( ( ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  /\  (
( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
) )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
106102, 103, 104, 105syl3anc 1227 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  (
( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  /\  ( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
) )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
107100, 106mpand 675 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
)  ->  ( abs ` 
sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
10892, 107sylbid 215 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
)  ->  ( abs ` 
sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
109108ex 434 . . . . . . . . 9  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  u.  {
y } )  C_  A  ->  ( ( abs `  sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) ) )
110109a2d 26 . . . . . . . 8  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( ( x  u. 
{ y } ) 
C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B ) )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) ) )
11142, 110syl5 32 . . . . . . 7  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  C_  A  ->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) )  ->  (
( x  u.  {
y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) )
112111expcom 435 . . . . . 6  |-  ( -.  y  e.  x  -> 
( ph  ->  ( ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_ 
sum_ k  e.  x  ( abs `  B ) )  ->  ( (
x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) ) )
113112a2d 26 . . . . 5  |-  ( -.  y  e.  x  -> 
( ( ph  ->  ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_ 
sum_ k  e.  x  ( abs `  B ) ) )  ->  ( ph  ->  ( ( x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  {
y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) ) )
114113adantl 466 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) ) )  -> 
( ph  ->  ( ( x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) ) )
1159, 16, 23, 30, 38, 114findcard2s 7759 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) ) ) )
1162, 115mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) ) )
1171, 116mpi 17 1  |-  ( ph  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802   A.wral 2791   _Vcvv 3093   [_csb 3417    u. cun 3456    i^i cin 3457    C_ wss 3458   (/)c0 3767   {csn 4010   class class class wbr 4433   ` cfv 5574  (class class class)co 6277   Fincfn 7514   CCcc 9488   RRcr 9489   0cc0 9490    + caddc 9493    <_ cle 9627   abscabs 13041   sum_csu 13482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-sup 7899  df-oi 7933  df-card 8318  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11086  df-rp 11225  df-fz 11677  df-fzo 11799  df-seq 12082  df-exp 12141  df-hash 12380  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-clim 13285  df-sum 13483
This theorem is referenced by:  o1fsum  13601  seqabs  13602  cvgcmpce  13606  mertenslem1  13667  dvfsumabs  22290  mtest  22664  mtestbdd  22665  abelthlem7  22698  fsumharmonic  23206  ftalem1  23211  ftalem5  23215  dchrisumlem2  23540  dchrmusum2  23544  dchrvmasumlem3  23549  dchrvmasumiflem1  23551  dchrisum0lem1  23566  dchrisum0lem2a  23567  mudivsum  23580  mulogsumlem  23581  2vmadivsumlem  23590  selberglem2  23596  selberg3lem1  23607  selberg4lem1  23610  pntrsumbnd  23616  pntrlog2bndlem1  23627  pntrlog2bndlem3  23629  fourierdlem73  31847
  Copyright terms: Public domain W3C validator