MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumabs Structured version   Unicode version

Theorem fsumabs 13799
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumabs.1  |-  ( ph  ->  A  e.  Fin )
fsumabs.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsumabs  |-  ( ph  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsumabs
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3421 . 2  |-  A  C_  A
2 fsumabs.1 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3423 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 sumeq1 13693 . . . . . . . 8  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
54fveq2d 5824 . . . . . . 7  |-  ( w  =  (/)  ->  ( abs `  sum_ k  e.  w  B )  =  ( abs `  sum_ k  e.  (/)  B ) )
6 sumeq1 13693 . . . . . . 7  |-  ( w  =  (/)  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  (/)  ( abs `  B ) )
75, 6breq12d 4374 . . . . . 6  |-  ( w  =  (/)  ->  ( ( abs `  sum_ k  e.  w  B )  <_ 
sum_ k  e.  w  ( abs `  B )  <-> 
( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) )
83, 7imbi12d 321 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_ 
sum_ k  e.  w  ( abs `  B ) )  <->  ( (/)  C_  A  ->  ( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) ) )
98imbi2d 317 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) ) )  <->  ( ph  ->  ( (/)  C_  A  -> 
( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) ) ) )
10 sseq1 3423 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
11 sumeq1 13693 . . . . . . . 8  |-  ( w  =  x  ->  sum_ k  e.  w  B  =  sum_ k  e.  x  B )
1211fveq2d 5824 . . . . . . 7  |-  ( w  =  x  ->  ( abs `  sum_ k  e.  w  B )  =  ( abs `  sum_ k  e.  x  B )
)
13 sumeq1 13693 . . . . . . 7  |-  ( w  =  x  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  x  ( abs `  B ) )
1412, 13breq12d 4374 . . . . . 6  |-  ( w  =  x  ->  (
( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
)  <->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) ) )
1510, 14imbi12d 321 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) )  <->  ( x  C_  A  ->  ( abs ` 
sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B ) ) ) )
1615imbi2d 317 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B ) ) )  <-> 
( ph  ->  ( x 
C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B ) ) ) ) )
17 sseq1 3423 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
18 sumeq1 13693 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( x  u.  {
y } ) B )
1918fveq2d 5824 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  ( abs `  sum_ k  e.  w  B
)  =  ( abs `  sum_ k  e.  ( x  u.  { y } ) B ) )
20 sumeq1 13693 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) )
2119, 20breq12d 4374 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B )  <->  ( abs ` 
sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
2217, 21imbi12d 321 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B ) )  <->  ( (
x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) )
2322imbi2d 317 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) ) )  <->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) ) ) )
24 sseq1 3423 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
25 sumeq1 13693 . . . . . . . 8  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
2625fveq2d 5824 . . . . . . 7  |-  ( w  =  A  ->  ( abs `  sum_ k  e.  w  B )  =  ( abs `  sum_ k  e.  A  B )
)
27 sumeq1 13693 . . . . . . 7  |-  ( w  =  A  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  A  ( abs `  B ) )
2826, 27breq12d 4374 . . . . . 6  |-  ( w  =  A  ->  (
( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
)  <->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) ) )
2924, 28imbi12d 321 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) )  <->  ( A  C_  A  ->  ( abs ` 
sum_ k  e.  A  B )  <_  sum_ k  e.  A  ( abs `  B ) ) ) )
3029imbi2d 317 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B ) ) )  <-> 
( ph  ->  ( A 
C_  A  ->  ( abs `  sum_ k  e.  A  B )  <_  sum_ k  e.  A  ( abs `  B ) ) ) ) )
31 0le0 10645 . . . . . 6  |-  0  <_  0
32 sum0 13725 . . . . . . . 8  |-  sum_ k  e.  (/)  B  =  0
3332fveq2i 5823 . . . . . . 7  |-  ( abs `  sum_ k  e.  (/)  B )  =  ( abs `  0 )
34 abs0 13287 . . . . . . 7  |-  ( abs `  0 )  =  0
3533, 34eqtri 2445 . . . . . 6  |-  ( abs `  sum_ k  e.  (/)  B )  =  0
36 sum0 13725 . . . . . 6  |-  sum_ k  e.  (/)  ( abs `  B
)  =  0
3731, 35, 363brtr4i 4390 . . . . 5  |-  ( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B
)
38372a1i 12 . . . 4  |-  ( ph  ->  ( (/)  C_  A  -> 
( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) )
39 ssun1 3567 . . . . . . . . . 10  |-  x  C_  ( x  u.  { y } )
40 sstr 3410 . . . . . . . . . 10  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
4139, 40mpan 674 . . . . . . . . 9  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4241imim1i 60 . . . . . . . 8  |-  ( ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_ 
sum_ k  e.  x  ( abs `  B ) )  ->  ( (
x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) ) )
43 simpll 758 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ph )
4443, 2syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  A  e.  Fin )
45 simpr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  C_  A
)
4645unssad 3581 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  x  C_  A )
47 ssfi 7740 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  Fin  /\  x  C_  A )  ->  x  e.  Fin )
4844, 46, 47syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  x  e.  Fin )
4946sselda 3402 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  x )  ->  k  e.  A )
50 fsumabs.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
5143, 50sylan 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  A )  ->  B  e.  CC )
5249, 51syldan 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  x )  ->  B  e.  CC )
5348, 52fsumcl 13737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  x  B  e.  CC )
5453abscld 13436 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  x  B )  e.  RR )
5552abscld 13436 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  x )  ->  ( abs `  B
)  e.  RR )
5648, 55fsumrecl 13738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  x  ( abs `  B )  e.  RR )
5745unssbd 3582 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  { y }  C_  A )
58 vex 3020 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
5958snss 4062 . . . . . . . . . . . . . . . 16  |-  ( y  e.  A  <->  { y }  C_  A )
6057, 59sylibr 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  y  e.  A )
6150ralrimiva 2774 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
6243, 61syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  A. k  e.  A  B  e.  CC )
63 nfcsb1v 3349 . . . . . . . . . . . . . . . . 17  |-  F/_ k [_ y  /  k ]_ B
6463nfel1 2578 . . . . . . . . . . . . . . . 16  |-  F/ k
[_ y  /  k ]_ B  e.  CC
65 csbeq1a 3342 . . . . . . . . . . . . . . . . 17  |-  ( k  =  y  ->  B  =  [_ y  /  k ]_ B )
6665eleq1d 2485 . . . . . . . . . . . . . . . 16  |-  ( k  =  y  ->  ( B  e.  CC  <->  [_ y  / 
k ]_ B  e.  CC ) )
6764, 66rspc 3114 . . . . . . . . . . . . . . 15  |-  ( y  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ y  /  k ]_ B  e.  CC )
)
6860, 62, 67sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  [_ y  /  k ]_ B  e.  CC )
6968abscld 13436 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  [_ y  / 
k ]_ B )  e.  RR )
7054, 56, 69leadd1d 10153 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
)  <->  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  <_  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) ) )
71 simplr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  -.  y  e.  x )
72 disjsn 3998 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  { y } )  =  (/)  <->  -.  y  e.  x )
7371, 72sylibr 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  i^i  { y } )  =  (/) )
74 eqidd 2424 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  =  ( x  u.  { y } ) )
75 ssfi 7740 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  Fin  /\  ( x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } )  e.  Fin )
7644, 45, 75syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  e.  Fin )
7745sselda 3402 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  k  e.  A )
7877, 51syldan 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  B  e.  CC )
7978abscld 13436 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  ( abs `  B )  e.  RR )
8079recnd 9615 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  ( abs `  B )  e.  CC )
8173, 74, 76, 80fsumsplit 13744 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  =  ( sum_ k  e.  x  ( abs `  B )  +  sum_ k  e.  { y }  ( abs `  B
) ) )
82 csbfv2g 5856 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  _V  ->  [_ y  /  k ]_ ( abs `  B )  =  ( abs `  [_ y  /  k ]_ B
) )
8358, 82ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  [_ y  /  k ]_ ( abs `  B )  =  ( abs `  [_ y  /  k ]_ B
)
8469recnd 9615 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  [_ y  / 
k ]_ B )  e.  CC )
8583, 84syl5eqel 2505 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  [_ y  /  k ]_ ( abs `  B )  e.  CC )
86 sumsns 13749 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  _V  /\  [_ y  /  k ]_ ( abs `  B )  e.  CC )  ->  sum_ k  e.  { y }  ( abs `  B
)  =  [_ y  /  k ]_ ( abs `  B ) )
8758, 85, 86sylancr 667 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  { y }  ( abs `  B )  = 
[_ y  /  k ]_ ( abs `  B
) )
8887, 83syl6eq 2473 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  { y }  ( abs `  B )  =  ( abs `  [_ y  /  k ]_ B
) )
8988oveq2d 6260 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( sum_ k  e.  x  ( abs `  B )  +  sum_ k  e.  {
y }  ( abs `  B ) )  =  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) )
9081, 89eqtrd 2457 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  =  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) )
9190breq2d 4373 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
)  <->  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  <_  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) ) )
9270, 91bitr4d 259 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
)  <->  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) )
9373, 74, 76, 78fsumsplit 13744 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) B  =  ( sum_ k  e.  x  B  +  sum_ k  e.  { y } B ) )
94 sumsns 13749 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  A  /\  [_ y  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
y } B  = 
[_ y  /  k ]_ B )
9560, 68, 94syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  { y } B  =  [_ y  /  k ]_ B )
9695oveq2d 6260 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( sum_ k  e.  x  B  +  sum_ k  e.  {
y } B )  =  ( sum_ k  e.  x  B  +  [_ y  /  k ]_ B ) )
9793, 96eqtrd 2457 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) B  =  ( sum_ k  e.  x  B  +  [_ y  /  k ]_ B ) )
9897fveq2d 5824 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  =  ( abs `  ( sum_ k  e.  x  B  +  [_ y  / 
k ]_ B ) ) )
9953, 68abstrid 13456 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  ( sum_ k  e.  x  B  +  [_ y  /  k ]_ B ) )  <_ 
( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) ) )
10098, 99eqbrtrd 4382 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) ) )
10176, 78fsumcl 13737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) B  e.  CC )
102101abscld 13436 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  e.  RR )
10354, 69readdcld 9616 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  e.  RR )
10476, 79fsumrecl 13738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  e.  RR )
105 letr 9673 . . . . . . . . . . . . 13  |-  ( ( ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  e.  RR  /\  ( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  e.  RR  /\  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  e.  RR )  -> 
( ( ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  /\  (
( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
) )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
106102, 103, 104, 105syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  (
( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  /\  ( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
) )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
107100, 106mpand 679 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
)  ->  ( abs ` 
sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
10892, 107sylbid 218 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
)  ->  ( abs ` 
sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
109108ex 435 . . . . . . . . 9  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  u.  {
y } )  C_  A  ->  ( ( abs `  sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) ) )
110109a2d 29 . . . . . . . 8  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( ( x  u. 
{ y } ) 
C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B ) )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) ) )
11142, 110syl5 33 . . . . . . 7  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  C_  A  ->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) )  ->  (
( x  u.  {
y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) )
112111expcom 436 . . . . . 6  |-  ( -.  y  e.  x  -> 
( ph  ->  ( ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_ 
sum_ k  e.  x  ( abs `  B ) )  ->  ( (
x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) ) )
113112a2d 29 . . . . 5  |-  ( -.  y  e.  x  -> 
( ( ph  ->  ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_ 
sum_ k  e.  x  ( abs `  B ) ) )  ->  ( ph  ->  ( ( x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  {
y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) ) )
114113adantl 467 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) ) )  -> 
( ph  ->  ( ( x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) ) )
1159, 16, 23, 30, 38, 114findcard2s 7760 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) ) ) )
1162, 115mpcom 37 . 2  |-  ( ph  ->  ( A  C_  A  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) ) )
1171, 116mpi 20 1  |-  ( ph  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2709   _Vcvv 3017   [_csb 3333    u. cun 3372    i^i cin 3373    C_ wss 3374   (/)c0 3699   {csn 3936   class class class wbr 4361   ` cfv 5539  (class class class)co 6244   Fincfn 7519   CCcc 9483   RRcr 9484   0cc0 9485    + caddc 9488    <_ cle 9622   abscabs 13236   sum_csu 13690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536  ax-inf2 8094  ax-cnex 9541  ax-resscn 9542  ax-1cn 9543  ax-icn 9544  ax-addcl 9545  ax-addrcl 9546  ax-mulcl 9547  ax-mulrcl 9548  ax-mulcom 9549  ax-addass 9550  ax-mulass 9551  ax-distr 9552  ax-i2m1 9553  ax-1ne0 9554  ax-1rid 9555  ax-rnegex 9556  ax-rrecex 9557  ax-cnre 9558  ax-pre-lttri 9559  ax-pre-lttrn 9560  ax-pre-ltadd 9561  ax-pre-mulgt0 9562  ax-pre-sup 9563
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-nel 2597  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-pss 3390  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4158  df-int 4194  df-iun 4239  df-br 4362  df-opab 4421  df-mpt 4422  df-tr 4457  df-eprel 4702  df-id 4706  df-po 4712  df-so 4713  df-fr 4750  df-se 4751  df-we 4752  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-pred 5337  df-ord 5383  df-on 5384  df-lim 5385  df-suc 5386  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-isom 5548  df-riota 6206  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-om 6646  df-1st 6746  df-2nd 6747  df-wrecs 6978  df-recs 7040  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-en 7520  df-dom 7521  df-sdom 7522  df-fin 7523  df-sup 7904  df-oi 7973  df-card 8320  df-pnf 9623  df-mnf 9624  df-xr 9625  df-ltxr 9626  df-le 9627  df-sub 9808  df-neg 9809  df-div 10216  df-nn 10556  df-2 10614  df-3 10615  df-n0 10816  df-z 10884  df-uz 11106  df-rp 11249  df-fz 11731  df-fzo 11862  df-seq 12159  df-exp 12218  df-hash 12461  df-cj 13101  df-re 13102  df-im 13103  df-sqrt 13237  df-abs 13238  df-clim 13490  df-sum 13691
This theorem is referenced by:  o1fsum  13811  seqabs  13812  cvgcmpce  13816  mertenslem1  13878  dvfsumabs  22912  mtest  23296  mtestbdd  23297  abelthlem7  23330  fsumharmonic  23874  ftalem1  23934  ftalem5  23938  ftalem5OLD  23940  dchrisumlem2  24265  dchrmusum2  24269  dchrvmasumlem3  24274  dchrvmasumiflem1  24276  dchrisum0lem1  24291  dchrisum0lem2a  24292  mudivsum  24305  mulogsumlem  24306  2vmadivsumlem  24315  selberglem2  24321  selberg3lem1  24332  selberg4lem1  24335  pntrsumbnd  24341  pntrlog2bndlem1  24352  pntrlog2bndlem3  24354  fourierdlem73  37926  etransclem23  38005
  Copyright terms: Public domain W3C validator