MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum2d Structured version   Unicode version

Theorem fsum2d 13735
Description: Write a double sum as a sum over a two-dimensional region. Note that  B ( j ) is a function of  j. (Contributed by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
fsum2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fsum2d.2  |-  ( ph  ->  A  e.  Fin )
fsum2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fsum2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fsum2d  |-  ( ph  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Distinct variable groups:    j, k,
z, A    B, k,
z    D, j, k    z, C    ph, j, k, z
Allowed substitution hints:    B( j)    C( j, k)    D( z)

Proof of Theorem fsum2d
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3460 . 2  |-  A  C_  A
2 fsum2d.2 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3462 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 sumeq1 13658 . . . . . . 7  |-  ( w  =  (/)  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  (/)  sum_ k  e.  B  C )
5 iuneq1 4284 . . . . . . . 8  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  (/)  ( { j }  X.  B ) )
65sumeq1d 13670 . . . . . . 7  |-  ( w  =  (/)  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B
) D )
74, 6eqeq12d 2424 . . . . . 6  |-  ( w  =  (/)  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  (/)  ( { j }  X.  B ) D ) )
83, 7imbi12d 318 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( (/)  C_  A  ->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B ) D ) ) )
98imbi2d 314 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  (
(/)  C_  A  ->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  (/)  ( { j }  X.  B ) D ) ) ) )
10 sseq1 3462 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
11 sumeq1 13658 . . . . . . 7  |-  ( w  =  x  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  x  sum_ k  e.  B  C
)
12 iuneq1 4284 . . . . . . . 8  |-  ( w  =  x  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  x  ( {
j }  X.  B
) )
1312sumeq1d 13670 . . . . . . 7  |-  ( w  =  x  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
1411, 13eqeq12d 2424 . . . . . 6  |-  ( w  =  x  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D ) )
1510, 14imbi12d 318 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  -> 
sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( x  C_  A  -> 
sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) )
1615imbi2d 314 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( x  C_  A  -> 
sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) ) )
17 sseq1 3462 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
18 sumeq1 13658 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C )
19 iuneq1 4284 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  U_ j  e.  w  ( { j }  X.  B )  =  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )
2019sumeq1d 13670 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D )
2118, 20eqeq12d 2424 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) )
2217, 21imbi12d 318 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <->  ( (
x  u.  { y } )  C_  A  -> 
sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) )
2322imbi2d 314 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  -> 
sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( ( x  u.  {
y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) ) )
24 sseq1 3462 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
25 sumeq1 13658 . . . . . . 7  |-  ( w  =  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  A  sum_ k  e.  B  C
)
26 iuneq1 4284 . . . . . . . 8  |-  ( w  =  A  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  A  ( {
j }  X.  B
) )
2726sumeq1d 13670 . . . . . . 7  |-  ( w  =  A  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
2825, 27eqeq12d 2424 . . . . . 6  |-  ( w  =  A  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  A  ( { j }  X.  B ) D ) )
2924, 28imbi12d 318 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  -> 
sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( A  C_  A  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
3029imbi2d 314 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( A  C_  A  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) ) )
31 sum0 13690 . . . . . 6  |-  sum_ z  e.  (/)  D  =  0
32 0iun 4327 . . . . . . 7  |-  U_ j  e.  (/)  ( { j }  X.  B )  =  (/)
3332sumeq1i 13667 . . . . . 6  |-  sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B ) D  = 
sum_ z  e.  (/)  D
34 sum0 13690 . . . . . 6  |-  sum_ j  e.  (/)  sum_ k  e.  B  C  =  0
3531, 33, 343eqtr4ri 2442 . . . . 5  |-  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  (/)  ( { j }  X.  B ) D
3635a1ii 12 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B ) D ) )
37 ssun1 3605 . . . . . . . . . 10  |-  x  C_  ( x  u.  { y } )
38 sstr 3449 . . . . . . . . . 10  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
3937, 38mpan 668 . . . . . . . . 9  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4039imim1i 57 . . . . . . . 8  |-  ( ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )
41 fsum2d.1 . . . . . . . . . . 11  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
42 simpll 752 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ph )
4342, 2syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  A  e.  Fin )
44 fsum2d.3 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
4542, 44sylan 469 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  j  e.  A )  ->  B  e.  Fin )
46 fsum2d.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
4742, 46sylan 469 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  ( j  e.  A  /\  k  e.  B
) )  ->  C  e.  CC )
48 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  -.  y  e.  x )
49 simpr 459 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  C_  A
)
50 biid 236 . . . . . . . . . . 11  |-  ( sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  <->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )
5141, 43, 45, 47, 48, 49, 50fsum2dlem 13734 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
5251exp31 602 . . . . . . . . 9  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  u.  {
y } )  C_  A  ->  ( sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  ->  sum_ j  e.  ( x  u.  {
y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D ) ) )
5352a2d 26 . . . . . . . 8  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( ( x  u. 
{ y } ) 
C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  (
( x  u.  {
y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) )
5440, 53syl5 30 . . . . . . 7  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  C_  A  -> 
sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5554expcom 433 . . . . . 6  |-  ( -.  y  e.  x  -> 
( ph  ->  ( ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5655a2d 26 . . . . 5  |-  ( -.  y  e.  x  -> 
( ( ph  ->  ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )  ->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  sum_ j  e.  ( x  u.  {
y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D ) ) ) )
5756adantl 464 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )  ->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  sum_ j  e.  ( x  u.  {
y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D ) ) ) )
589, 16, 23, 30, 36, 57findcard2s 7794 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
592, 58mpcom 34 . 2  |-  ( ph  ->  ( A  C_  A  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) )
601, 59mpi 18 1  |-  ( ph  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    u. cun 3411    C_ wss 3413   (/)c0 3737   {csn 3971   <.cop 3977   U_ciun 4270    X. cxp 4820   Fincfn 7553   CCcc 9519   0cc0 9521   sum_csu 13655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-sup 7934  df-oi 7968  df-card 8351  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-n0 10836  df-z 10905  df-uz 11127  df-rp 11265  df-fz 11725  df-fzo 11853  df-seq 12150  df-exp 12209  df-hash 12451  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-clim 13458  df-sum 13656
This theorem is referenced by:  fsumxp  13736  fsumcom2  13738  ovoliunlem1  22203  fsumvma  23867  eulerpartlemgs2  28811  dvnprodlem2  37093
  Copyright terms: Public domain W3C validator