MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum00 Structured version   Unicode version

Theorem fsum00 13836
Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1  |-  ( ph  ->  A  e.  Fin )
fsumge0.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fsumge0.3  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
fsum00  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  = 
0 ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsum00
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 fsumge0.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  Fin )
21adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  A  e.  Fin )
3 fsumge0.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
43adantlr 719 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  A )  ->  B  e.  RR )
5 fsumge0.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
65adantlr 719 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  A )  ->  0  <_  B )
7 snssi 4147 . . . . . . . . . 10  |-  ( m  e.  A  ->  { m }  C_  A )
87adantl 467 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  { m }  C_  A )
92, 4, 6, 8fsumless 13834 . . . . . . . 8  |-  ( (
ph  /\  m  e.  A )  ->  sum_ k  e.  { m } B  <_ 
sum_ k  e.  A  B )
109adantlr 719 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  {
m } B  <_  sum_ k  e.  A  B
)
11 simpr 462 . . . . . . . 8  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  m  e.  A )
123, 5jca 534 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( B  e.  RR  /\  0  <_  B ) )
1312ralrimiva 2846 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  A  ( B  e.  RR  /\  0  <_  B )
)
1413adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. k  e.  A  ( B  e.  RR  /\  0  <_  B ) )
15 nfcsb1v 3417 . . . . . . . . . . . . . 14  |-  F/_ k [_ m  /  k ]_ B
1615nfel1 2607 . . . . . . . . . . . . 13  |-  F/ k
[_ m  /  k ]_ B  e.  RR
17 nfcv 2591 . . . . . . . . . . . . . 14  |-  F/_ k
0
18 nfcv 2591 . . . . . . . . . . . . . 14  |-  F/_ k  <_
1917, 18, 15nfbr 4470 . . . . . . . . . . . . 13  |-  F/ k 0  <_  [_ m  / 
k ]_ B
2016, 19nfan 1986 . . . . . . . . . . . 12  |-  F/ k ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B )
21 csbeq1a 3410 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
2221eleq1d 2498 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  ( B  e.  RR  <->  [_ m  / 
k ]_ B  e.  RR ) )
2321breq2d 4438 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
0  <_  B  <->  0  <_  [_ m  /  k ]_ B ) )
2422, 23anbi12d 715 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( B  e.  RR  /\  0  <_  B )  <->  (
[_ m  /  k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) ) )
2520, 24rspc 3182 . . . . . . . . . . 11  |-  ( m  e.  A  ->  ( A. k  e.  A  ( B  e.  RR  /\  0  <_  B )  ->  ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) ) )
2614, 25mpan9 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) )
2726simpld 460 . . . . . . . . 9  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  RR )
2827recnd 9668 . . . . . . . 8  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  CC )
29 sumsns 13789 . . . . . . . 8  |-  ( ( m  e.  A  /\  [_ m  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
m } B  = 
[_ m  /  k ]_ B )
3011, 28, 29syl2anc 665 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  {
m } B  = 
[_ m  /  k ]_ B )
31 simplr 760 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  A  B  =  0 )
3210, 30, 313brtr3d 4455 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  <_  0 )
3326simprd 464 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  0  <_  [_ m  / 
k ]_ B )
34 0re 9642 . . . . . . 7  |-  0  e.  RR
35 letri3 9718 . . . . . . 7  |-  ( (
[_ m  /  k ]_ B  e.  RR  /\  0  e.  RR )  ->  ( [_ m  /  k ]_ B  =  0  <->  ( [_ m  /  k ]_ B  <_  0  /\  0  <_  [_ m  /  k ]_ B ) ) )
3627, 34, 35sylancl 666 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  ( [_ m  / 
k ]_ B  =  0  <-> 
( [_ m  /  k ]_ B  <_  0  /\  0  <_  [_ m  / 
k ]_ B ) ) )
3732, 33, 36mpbir2and 930 . . . . 5  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  =  0
)
3837ralrimiva 2846 . . . 4  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. m  e.  A  [_ m  / 
k ]_ B  =  0 )
39 nfv 1754 . . . . 5  |-  F/ m  B  =  0
4015nfeq1 2606 . . . . 5  |-  F/ k
[_ m  /  k ]_ B  =  0
4121eqeq1d 2431 . . . . 5  |-  ( k  =  m  ->  ( B  =  0  <->  [_ m  / 
k ]_ B  =  0 ) )
4239, 40, 41cbvral 3058 . . . 4  |-  ( A. k  e.  A  B  =  0  <->  A. m  e.  A  [_ m  / 
k ]_ B  =  0 )
4338, 42sylibr 215 . . 3  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. k  e.  A  B  = 
0 )
4443ex 435 . 2  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  ->  A. k  e.  A  B  =  0 ) )
45 sumz 13766 . . . . 5  |-  ( ( A  C_  ( ZZ>= ` 
0 )  \/  A  e.  Fin )  ->  sum_ k  e.  A  0  = 
0 )
4645olcs 396 . . . 4  |-  ( A  e.  Fin  ->  sum_ k  e.  A  0  = 
0 )
47 sumeq2 13738 . . . . 5  |-  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  0 )
4847eqeq1d 2431 . . . 4  |-  ( A. k  e.  A  B  =  0  ->  ( sum_ k  e.  A  B  =  0  <->  sum_ k  e.  A  0  =  0 ) )
4946, 48syl5ibrcom 225 . . 3  |-  ( A  e.  Fin  ->  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  0 ) )
501, 49syl 17 . 2  |-  ( ph  ->  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  0 ) )
5144, 50impbid 193 1  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  = 
0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   [_csb 3401    C_ wss 3442   {csn 4002   class class class wbr 4426   ` cfv 5601   Fincfn 7577   CCcc 9536   RRcr 9537   0cc0 9538    <_ cle 9675   ZZ>=cuz 11159   sum_csu 13730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-oi 8025  df-card 8372  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-ico 11641  df-fz 11783  df-fzo 11914  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-clim 13530  df-sum 13731
This theorem is referenced by:  ramcl  14950  rrxcph  22244  rrxmet  22255  jensen  23779  eqeelen  24780  axcgrid  24792  rrnmet  31865
  Copyright terms: Public domain W3C validator