MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunfv Structured version   Unicode version

Theorem fsnunfv 6063
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
Assertion
Ref Expression
fsnunfv  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )

Proof of Theorem fsnunfv
StepHypRef Expression
1 dmres 5087 . . . . . . . . 9  |-  dom  ( F  |`  { X }
)  =  ( { X }  i^i  dom  F )
2 incom 3598 . . . . . . . . 9  |-  ( { X }  i^i  dom  F )  =  ( dom 
F  i^i  { X } )
31, 2eqtri 2450 . . . . . . . 8  |-  dom  ( F  |`  { X }
)  =  ( dom 
F  i^i  { X } )
4 disjsn 4003 . . . . . . . . 9  |-  ( ( dom  F  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  F )
54biimpri 209 . . . . . . . 8  |-  ( -.  X  e.  dom  F  ->  ( dom  F  i^i  { X } )  =  (/) )
63, 5syl5eq 2474 . . . . . . 7  |-  ( -.  X  e.  dom  F  ->  dom  ( F  |`  { X } )  =  (/) )
763ad2ant3 1028 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  dom  ( F  |`  { X } )  =  (/) )
8 relres 5094 . . . . . . 7  |-  Rel  ( F  |`  { X }
)
9 reldm0 5014 . . . . . . 7  |-  ( Rel  ( F  |`  { X } )  ->  (
( F  |`  { X } )  =  (/)  <->  dom  ( F  |`  { X } )  =  (/) ) )
108, 9ax-mp 5 . . . . . 6  |-  ( ( F  |`  { X } )  =  (/)  <->  dom  ( F  |`  { X } )  =  (/) )
117, 10sylibr 215 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( F  |` 
{ X } )  =  (/) )
12 fnsng 5591 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. X ,  Y >. }  Fn  { X } )
13123adant3 1025 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  { <. X ,  Y >. }  Fn  { X } )
14 fnresdm 5646 . . . . . 6  |-  ( {
<. X ,  Y >. }  Fn  { X }  ->  ( { <. X ,  Y >. }  |`  { X } )  =  { <. X ,  Y >. } )
1513, 14syl 17 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( { <. X ,  Y >. }  |`  { X } )  =  { <. X ,  Y >. } )
1611, 15uneq12d 3564 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  |`  { X }
)  u.  ( {
<. X ,  Y >. }  |`  { X } ) )  =  ( (/)  u. 
{ <. X ,  Y >. } ) )
17 resundir 5081 . . . 4  |-  ( ( F  u.  { <. X ,  Y >. } )  |`  { X } )  =  ( ( F  |`  { X } )  u.  ( { <. X ,  Y >. }  |`  { X } ) )
18 uncom 3553 . . . . 5  |-  ( (/)  u. 
{ <. X ,  Y >. } )  =  ( { <. X ,  Y >. }  u.  (/) )
19 un0 3732 . . . . 5  |-  ( {
<. X ,  Y >. }  u.  (/) )  =  { <. X ,  Y >. }
2018, 19eqtr2i 2451 . . . 4  |-  { <. X ,  Y >. }  =  ( (/)  u.  { <. X ,  Y >. } )
2116, 17, 203eqtr4g 2487 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  { X } )  =  { <. X ,  Y >. } )
2221fveq1d 5827 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( (
( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X
)  =  ( {
<. X ,  Y >. } `
 X ) )
23 snidg 3967 . . . 4  |-  ( X  e.  V  ->  X  e.  { X } )
24233ad2ant1 1026 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  X  e.  { X } )
25 fvres 5839 . . 3  |-  ( X  e.  { X }  ->  ( ( ( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X )  =  ( ( F  u.  { <. X ,  Y >. } ) `  X ) )
2624, 25syl 17 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( (
( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X
)  =  ( ( F  u.  { <. X ,  Y >. } ) `
 X ) )
27 fvsng 6057 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( { <. X ,  Y >. } `  X
)  =  Y )
28273adant3 1025 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( { <. X ,  Y >. } `
 X )  =  Y )
2922, 26, 283eqtr3d 2470 1  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ w3a 982    = wceq 1437    e. wcel 1872    u. cun 3377    i^i cin 3378   (/)c0 3704   {csn 3941   <.cop 3947   dom cdm 4796    |` cres 4798   Rel wrel 4801    Fn wfn 5539   ` cfv 5544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pr 4603
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-res 4808  df-iota 5508  df-fun 5546  df-fn 5547  df-fv 5552
This theorem is referenced by:  hashf1lem1  12566  cats1un  12778  fvsetsid  15091  islindf4  19338  mapfzcons2  35473  fnchoice  37266  nnsum4primeseven  38708  nnsum4primesevenALTV  38709
  Copyright terms: Public domain W3C validator