MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunfv Structured version   Unicode version

Theorem fsnunfv 5918
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
Assertion
Ref Expression
fsnunfv  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )

Proof of Theorem fsnunfv
StepHypRef Expression
1 dmres 5131 . . . . . . . . 9  |-  dom  ( F  |`  { X }
)  =  ( { X }  i^i  dom  F )
2 incom 3543 . . . . . . . . 9  |-  ( { X }  i^i  dom  F )  =  ( dom 
F  i^i  { X } )
31, 2eqtri 2463 . . . . . . . 8  |-  dom  ( F  |`  { X }
)  =  ( dom 
F  i^i  { X } )
4 disjsn 3936 . . . . . . . . 9  |-  ( ( dom  F  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  F )
54biimpri 206 . . . . . . . 8  |-  ( -.  X  e.  dom  F  ->  ( dom  F  i^i  { X } )  =  (/) )
63, 5syl5eq 2487 . . . . . . 7  |-  ( -.  X  e.  dom  F  ->  dom  ( F  |`  { X } )  =  (/) )
763ad2ant3 1011 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  dom  ( F  |`  { X } )  =  (/) )
8 relres 5138 . . . . . . 7  |-  Rel  ( F  |`  { X }
)
9 reldm0 5057 . . . . . . 7  |-  ( Rel  ( F  |`  { X } )  ->  (
( F  |`  { X } )  =  (/)  <->  dom  ( F  |`  { X } )  =  (/) ) )
108, 9ax-mp 5 . . . . . 6  |-  ( ( F  |`  { X } )  =  (/)  <->  dom  ( F  |`  { X } )  =  (/) )
117, 10sylibr 212 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( F  |` 
{ X } )  =  (/) )
12 fnsng 5465 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. X ,  Y >. }  Fn  { X } )
13123adant3 1008 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  { <. X ,  Y >. }  Fn  { X } )
14 fnresdm 5520 . . . . . 6  |-  ( {
<. X ,  Y >. }  Fn  { X }  ->  ( { <. X ,  Y >. }  |`  { X } )  =  { <. X ,  Y >. } )
1513, 14syl 16 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( { <. X ,  Y >. }  |`  { X } )  =  { <. X ,  Y >. } )
1611, 15uneq12d 3511 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  |`  { X }
)  u.  ( {
<. X ,  Y >. }  |`  { X } ) )  =  ( (/)  u. 
{ <. X ,  Y >. } ) )
17 resundir 5125 . . . 4  |-  ( ( F  u.  { <. X ,  Y >. } )  |`  { X } )  =  ( ( F  |`  { X } )  u.  ( { <. X ,  Y >. }  |`  { X } ) )
18 uncom 3500 . . . . 5  |-  ( (/)  u. 
{ <. X ,  Y >. } )  =  ( { <. X ,  Y >. }  u.  (/) )
19 un0 3662 . . . . 5  |-  ( {
<. X ,  Y >. }  u.  (/) )  =  { <. X ,  Y >. }
2018, 19eqtr2i 2464 . . . 4  |-  { <. X ,  Y >. }  =  ( (/)  u.  { <. X ,  Y >. } )
2116, 17, 203eqtr4g 2500 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  { X } )  =  { <. X ,  Y >. } )
2221fveq1d 5693 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( (
( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X
)  =  ( {
<. X ,  Y >. } `
 X ) )
23 snidg 3903 . . . 4  |-  ( X  e.  V  ->  X  e.  { X } )
24233ad2ant1 1009 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  X  e.  { X } )
25 fvres 5704 . . 3  |-  ( X  e.  { X }  ->  ( ( ( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X )  =  ( ( F  u.  { <. X ,  Y >. } ) `  X ) )
2624, 25syl 16 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( (
( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X
)  =  ( ( F  u.  { <. X ,  Y >. } ) `
 X ) )
27 fvsng 5912 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( { <. X ,  Y >. } `  X
)  =  Y )
28273adant3 1008 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( { <. X ,  Y >. } `
 X )  =  Y )
2922, 26, 283eqtr3d 2483 1  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1369    e. wcel 1756    u. cun 3326    i^i cin 3327   (/)c0 3637   {csn 3877   <.cop 3883   dom cdm 4840    |` cres 4842   Rel wrel 4845    Fn wfn 5413   ` cfv 5418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-res 4852  df-iota 5381  df-fun 5420  df-fn 5421  df-fv 5426
This theorem is referenced by:  hashf1lem1  12208  cats1un  12370  fvsetsid  14199  islindf4  18267  mapfzcons2  29055  fnchoice  29751
  Copyright terms: Public domain W3C validator