MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunfv Structured version   Unicode version

Theorem fsnunfv 6112
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
Assertion
Ref Expression
fsnunfv  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )

Proof of Theorem fsnunfv
StepHypRef Expression
1 dmres 5300 . . . . . . . . 9  |-  dom  ( F  |`  { X }
)  =  ( { X }  i^i  dom  F )
2 incom 3696 . . . . . . . . 9  |-  ( { X }  i^i  dom  F )  =  ( dom 
F  i^i  { X } )
31, 2eqtri 2496 . . . . . . . 8  |-  dom  ( F  |`  { X }
)  =  ( dom 
F  i^i  { X } )
4 disjsn 4094 . . . . . . . . 9  |-  ( ( dom  F  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  F )
54biimpri 206 . . . . . . . 8  |-  ( -.  X  e.  dom  F  ->  ( dom  F  i^i  { X } )  =  (/) )
63, 5syl5eq 2520 . . . . . . 7  |-  ( -.  X  e.  dom  F  ->  dom  ( F  |`  { X } )  =  (/) )
763ad2ant3 1019 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  dom  ( F  |`  { X } )  =  (/) )
8 relres 5307 . . . . . . 7  |-  Rel  ( F  |`  { X }
)
9 reldm0 5226 . . . . . . 7  |-  ( Rel  ( F  |`  { X } )  ->  (
( F  |`  { X } )  =  (/)  <->  dom  ( F  |`  { X } )  =  (/) ) )
108, 9ax-mp 5 . . . . . 6  |-  ( ( F  |`  { X } )  =  (/)  <->  dom  ( F  |`  { X } )  =  (/) )
117, 10sylibr 212 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( F  |` 
{ X } )  =  (/) )
12 fnsng 5641 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. X ,  Y >. }  Fn  { X } )
13123adant3 1016 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  { <. X ,  Y >. }  Fn  { X } )
14 fnresdm 5696 . . . . . 6  |-  ( {
<. X ,  Y >. }  Fn  { X }  ->  ( { <. X ,  Y >. }  |`  { X } )  =  { <. X ,  Y >. } )
1513, 14syl 16 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( { <. X ,  Y >. }  |`  { X } )  =  { <. X ,  Y >. } )
1611, 15uneq12d 3664 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  |`  { X }
)  u.  ( {
<. X ,  Y >. }  |`  { X } ) )  =  ( (/)  u. 
{ <. X ,  Y >. } ) )
17 resundir 5294 . . . 4  |-  ( ( F  u.  { <. X ,  Y >. } )  |`  { X } )  =  ( ( F  |`  { X } )  u.  ( { <. X ,  Y >. }  |`  { X } ) )
18 uncom 3653 . . . . 5  |-  ( (/)  u. 
{ <. X ,  Y >. } )  =  ( { <. X ,  Y >. }  u.  (/) )
19 un0 3815 . . . . 5  |-  ( {
<. X ,  Y >. }  u.  (/) )  =  { <. X ,  Y >. }
2018, 19eqtr2i 2497 . . . 4  |-  { <. X ,  Y >. }  =  ( (/)  u.  { <. X ,  Y >. } )
2116, 17, 203eqtr4g 2533 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  { X } )  =  { <. X ,  Y >. } )
2221fveq1d 5874 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( (
( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X
)  =  ( {
<. X ,  Y >. } `
 X ) )
23 snidg 4059 . . . 4  |-  ( X  e.  V  ->  X  e.  { X } )
24233ad2ant1 1017 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  X  e.  { X } )
25 fvres 5886 . . 3  |-  ( X  e.  { X }  ->  ( ( ( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X )  =  ( ( F  u.  { <. X ,  Y >. } ) `  X ) )
2624, 25syl 16 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( (
( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X
)  =  ( ( F  u.  { <. X ,  Y >. } ) `
 X ) )
27 fvsng 6106 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( { <. X ,  Y >. } `  X
)  =  Y )
28273adant3 1016 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( { <. X ,  Y >. } `
 X )  =  Y )
2922, 26, 283eqtr3d 2516 1  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ w3a 973    = wceq 1379    e. wcel 1767    u. cun 3479    i^i cin 3480   (/)c0 3790   {csn 4033   <.cop 4039   dom cdm 5005    |` cres 5007   Rel wrel 5010    Fn wfn 5589   ` cfv 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-res 5017  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602
This theorem is referenced by:  hashf1lem1  12485  cats1un  12681  fvsetsid  14532  islindf4  18742  mapfzcons2  30579  fnchoice  31306
  Copyright terms: Public domain W3C validator