MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsn2 Structured version   Unicode version

Theorem fsn2 6059
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1  |-  A  e. 
_V
Assertion
Ref Expression
fsn2  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )

Proof of Theorem fsn2
StepHypRef Expression
1 fsn2.1 . . . . . 6  |-  A  e. 
_V
21snid 4055 . . . . 5  |-  A  e. 
{ A }
3 ffvelrn 6017 . . . . 5  |-  ( ( F : { A }
--> B  /\  A  e. 
{ A } )  ->  ( F `  A )  e.  B
)
42, 3mpan2 671 . . . 4  |-  ( F : { A } --> B  ->  ( F `  A )  e.  B
)
5 ffn 5729 . . . . 5  |-  ( F : { A } --> B  ->  F  Fn  { A } )
6 dffn3 5736 . . . . . . 7  |-  ( F  Fn  { A }  <->  F : { A } --> ran  F )
76biimpi 194 . . . . . 6  |-  ( F  Fn  { A }  ->  F : { A }
--> ran  F )
8 imadmrn 5345 . . . . . . . . 9  |-  ( F
" dom  F )  =  ran  F
9 fndm 5678 . . . . . . . . . 10  |-  ( F  Fn  { A }  ->  dom  F  =  { A } )
109imaeq2d 5335 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  ( F " dom  F )  =  ( F
" { A }
) )
118, 10syl5eqr 2522 . . . . . . . 8  |-  ( F  Fn  { A }  ->  ran  F  =  ( F " { A } ) )
12 fnsnfv 5925 . . . . . . . . 9  |-  ( ( F  Fn  { A }  /\  A  e.  { A } )  ->  { ( F `  A ) }  =  ( F
" { A }
) )
132, 12mpan2 671 . . . . . . . 8  |-  ( F  Fn  { A }  ->  { ( F `  A ) }  =  ( F " { A } ) )
1411, 13eqtr4d 2511 . . . . . . 7  |-  ( F  Fn  { A }  ->  ran  F  =  {
( F `  A
) } )
15 feq3 5713 . . . . . . 7  |-  ( ran 
F  =  { ( F `  A ) }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
1614, 15syl 16 . . . . . 6  |-  ( F  Fn  { A }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
177, 16mpbid 210 . . . . 5  |-  ( F  Fn  { A }  ->  F : { A }
--> { ( F `  A ) } )
185, 17syl 16 . . . 4  |-  ( F : { A } --> B  ->  F : { A } --> { ( F `
 A ) } )
194, 18jca 532 . . 3  |-  ( F : { A } --> B  ->  ( ( F `
 A )  e.  B  /\  F : { A } --> { ( F `  A ) } ) )
20 snssi 4171 . . . 4  |-  ( ( F `  A )  e.  B  ->  { ( F `  A ) }  C_  B )
21 fss 5737 . . . . 5  |-  ( ( F : { A }
--> { ( F `  A ) }  /\  { ( F `  A
) }  C_  B
)  ->  F : { A } --> B )
2221ancoms 453 . . . 4  |-  ( ( { ( F `  A ) }  C_  B  /\  F : { A } --> { ( F `
 A ) } )  ->  F : { A } --> B )
2320, 22sylan 471 . . 3  |-  ( ( ( F `  A
)  e.  B  /\  F : { A } --> { ( F `  A ) } )  ->  F : { A } --> B )
2419, 23impbii 188 . 2  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F : { A }
--> { ( F `  A ) } ) )
25 fvex 5874 . . . 4  |-  ( F `
 A )  e. 
_V
261, 25fsn 6057 . . 3  |-  ( F : { A } --> { ( F `  A ) }  <->  F  =  { <. A ,  ( F `  A )
>. } )
2726anbi2i 694 . 2  |-  ( ( ( F `  A
)  e.  B  /\  F : { A } --> { ( F `  A ) } )  <-> 
( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )
2824, 27bitri 249 1  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    C_ wss 3476   {csn 4027   <.cop 4033   dom cdm 4999   ran crn 5000   "cima 5002    Fn wfn 5581   -->wf 5582   ` cfv 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594
This theorem is referenced by:  fnressn  6071  fressnfv  6073  mapsnconst  7461  elixpsn  7505  en1  7579  mat1dimelbas  18737  pt1hmeo  20039  0spth  24246  ldepsnlinclem1  32187  ldepsnlinclem2  32188
  Copyright terms: Public domain W3C validator